Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Myotonic Dystrophy | Research article

Clinical improvement of DM1 patients reflected by reversal of disease-induced gene expression in blood

Authors: Remco T. P. van Cruchten, Daniël van As, Jeffrey C. Glennon, Baziel G. M. van Engelen, Peter A. C. ‘t Hoen, the OPTIMISTIC consortium, the ReCognitION consortium

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Myotonic dystrophy type 1 (DM1) is an incurable multisystem disease caused by a CTG-repeat expansion in the DM1 protein kinase (DMPK) gene. The OPTIMISTIC clinical trial demonstrated positive and heterogenous effects of cognitive behavioral therapy (CBT) on the capacity for activity and social participations in DM1 patients. Through a process of reverse engineering, this study aims to identify druggable molecular biomarkers associated with the clinical improvement in the OPTIMISTIC cohort.

Methods

Based on full blood samples collected during OPTIMISTIC, we performed paired mRNA sequencing for 27 patients before and after the CBT intervention. Linear mixed effect models were used to identify biomarkers associated with the disease-causing CTG expansion and the mean clinical improvement across all clinical outcome measures.

Results

We identified 608 genes for which their expression was significantly associated with the CTG-repeat expansion, as well as 1176 genes significantly associated with the average clinical response towards the intervention. Remarkably, all 97 genes associated with both returned to more normal levels in patients who benefited the most from CBT. This main finding has been replicated based on an external dataset of mRNA data of DM1 patients and controls, singling these genes out as candidate biomarkers for therapy response. Among these candidate genes were DNAJB12, HDAC5, and TRIM8, each belonging to a protein family that is being studied in the context of neurological disorders or muscular dystrophies. Across the different gene sets, gene pathway enrichment analysis revealed disease-relevant impaired signaling in, among others, insulin-, metabolism-, and immune-related pathways. Furthermore, evidence for shared dysregulations with another neuromuscular disease, Duchenne muscular dystrophy, was found, suggesting a partial overlap in blood-based gene dysregulation.

Conclusions

DM1-relevant disease signatures can be identified on a molecular level in peripheral blood, opening new avenues for drug discovery and therapy efficacy assessments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol basis Dis. 2015;1852(4):594–606.CrossRef Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol basis Dis. 2015;1852(4):594–606.CrossRef
2.
go back to reference Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992;68(4):799–808.PubMedCrossRef Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992;68(4):799–808.PubMedCrossRef
3.
go back to reference Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science. 1992;255(5049):1253–5.PubMedCrossRef Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science. 1992;255(5049):1253–5.PubMedCrossRef
4.
go back to reference Fu YH, Pizzuti A, Fenwick RG, King J, Rajnarayan S, Dunne PW, et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992;255(5049):1256–8.PubMedCrossRef Fu YH, Pizzuti A, Fenwick RG, King J, Rajnarayan S, Dunne PW, et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992;255(5049):1256–8.PubMedCrossRef
5.
go back to reference Cumming SA, Hamilton MJ, Robb Y, Gregory H, McWilliam C, Cooper A, et al. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur J Hum Genet. 2018;26(11):1635–47.PubMedPubMedCentralCrossRef Cumming SA, Hamilton MJ, Robb Y, Gregory H, McWilliam C, Cooper A, et al. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur J Hum Genet. 2018;26(11):1635–47.PubMedPubMedCentralCrossRef
6.
go back to reference Napierała M, Krzyzosiak WJ. CUG repeats present in myotonin kinase RNA form metastable “slippery” hairpins. J Biol Chem. 1997;272(49):31079–85.PubMedCrossRef Napierała M, Krzyzosiak WJ. CUG repeats present in myotonin kinase RNA form metastable “slippery” hairpins. J Biol Chem. 1997;272(49):31079–85.PubMedCrossRef
7.
go back to reference Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet. 2002;11(7):805–14.PubMedCrossRef Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet. 2002;11(7):805–14.PubMedCrossRef
8.
go back to reference Warf MB, Berglund JA. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. RNA. 2007;13(12):2238–51.PubMedPubMedCentralCrossRef Warf MB, Berglund JA. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. RNA. 2007;13(12):2238–51.PubMedPubMedCentralCrossRef
9.
go back to reference van Cruchten RTP, Wieringa B, Wansink DG. Expanded CUG repeats in DMPK transcripts adopt diverse hairpin conformations without influencing the structure of the flanking sequences. RNA. 2019;25(4):481–95.PubMedPubMedCentralCrossRef van Cruchten RTP, Wieringa B, Wansink DG. Expanded CUG repeats in DMPK transcripts adopt diverse hairpin conformations without influencing the structure of the flanking sequences. RNA. 2019;25(4):481–95.PubMedPubMedCentralCrossRef
10.
go back to reference Nakamori M, Sobczak K, Puwanant A, Welle S, Eichinger K, Pandya S, et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol. 2013;74(6):862–72.PubMedPubMedCentralCrossRef Nakamori M, Sobczak K, Puwanant A, Welle S, Eichinger K, Pandya S, et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol. 2013;74(6):862–72.PubMedPubMedCentralCrossRef
11.
go back to reference Wang ET, Treacy D, Eichinger K, Struck A, Estabrook J, Wang TT, et al. Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Hum Mol Genet. 2018;28(8):1312–21.PubMedCentralCrossRef Wang ET, Treacy D, Eichinger K, Struck A, Estabrook J, Wang TT, et al. Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Hum Mol Genet. 2018;28(8):1312–21.PubMedCentralCrossRef
12.
go back to reference Otero BA, Poukalov K, Hildebrandt RP, Thornton CA, Jinnai K, Fujimura H, et al. Transcriptome alterations in myotonic dystrophy frontal cortex. Cell Rep. 2021;34(3):108634. Otero BA, Poukalov K, Hildebrandt RP, Thornton CA, Jinnai K, Fujimura H, et al. Transcriptome alterations in myotonic dystrophy frontal cortex. Cell Rep. 2021;34(3):108634.
13.
go back to reference Cumming SA, Jimenez-Moreno C, Okkersen K, Wenninger S, Daidj F, Hogarth F, et al. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology. 2019;93(10):e995–e1009.PubMedPubMedCentralCrossRef Cumming SA, Jimenez-Moreno C, Okkersen K, Wenninger S, Daidj F, Hogarth F, et al. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology. 2019;93(10):e995–e1009.PubMedPubMedCentralCrossRef
14.
go back to reference Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell. 2002;10(1):35–44.PubMedCrossRef Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell. 2002;10(1):35–44.PubMedCrossRef
15.
go back to reference Freyermuth F, Rau F, Kokunai Y, Linke T, Sellier C, Nakamori M, et al. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun. 2016;7(1):11067.PubMedPubMedCentralCrossRef Freyermuth F, Rau F, Kokunai Y, Linke T, Sellier C, Nakamori M, et al. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun. 2016;7(1):11067.PubMedPubMedCentralCrossRef
16.
go back to reference Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet. 2001;29(1):40–7.PubMedCrossRef Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet. 2001;29(1):40–7.PubMedCrossRef
17.
go back to reference Roussel M-P, Morin M, Gagnon C, Duchesne E. What is known about the effects of exercise or training to reduce skeletal muscle impairments of patients with myotonic dystrophy type 1? A scoping review. BMC Musculoskelet Disord. 2019;20(1):101.PubMedPubMedCentralCrossRef Roussel M-P, Morin M, Gagnon C, Duchesne E. What is known about the effects of exercise or training to reduce skeletal muscle impairments of patients with myotonic dystrophy type 1? A scoping review. BMC Musculoskelet Disord. 2019;20(1):101.PubMedPubMedCentralCrossRef
18.
go back to reference Okkersen K, Jimenez-Moreno C, Wenninger S, Daidj F, Glennon J, Cumming S, et al. Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1: a multicentre, single-blind, randomised trial. Lancet Neurol. 2018;17(8):671–80.PubMedCrossRef Okkersen K, Jimenez-Moreno C, Wenninger S, Daidj F, Glennon J, Cumming S, et al. Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1: a multicentre, single-blind, randomised trial. Lancet Neurol. 2018;17(8):671–80.PubMedCrossRef
19.
go back to reference Manta A, Stouth DW, Xhuti D, Chi L, Rebalka IA, Kalmar JM, et al. Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice. J Physiol. 2019;597(5):1361–81.PubMedPubMedCentralCrossRef Manta A, Stouth DW, Xhuti D, Chi L, Rebalka IA, Kalmar JM, et al. Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice. J Physiol. 2019;597(5):1361–81.PubMedPubMedCentralCrossRef
20.
go back to reference Hu N, Kim E, Antoury L, Li J, González-Pérez P, Rutkove SB, et al. Antisense oligonucleotide and adjuvant exercise therapy reverse fatigue in old mice with myotonic dystrophy. Mol Ther Nucleic Acids. 2020;23:393–405.PubMedPubMedCentralCrossRef Hu N, Kim E, Antoury L, Li J, González-Pérez P, Rutkove SB, et al. Antisense oligonucleotide and adjuvant exercise therapy reverse fatigue in old mice with myotonic dystrophy. Mol Ther Nucleic Acids. 2020;23:393–405.PubMedPubMedCentralCrossRef
21.
go back to reference van As D, Okkersen K, Bassez G, Schoser B, Lochmüller H, Glennon JC, et al. Clinical outcome evaluations and CBT response prediction in myotonic dystrophy. J Neuromuscul Dis. 2021;8(6):1031–46.PubMedPubMedCentralCrossRef van As D, Okkersen K, Bassez G, Schoser B, Lochmüller H, Glennon JC, et al. Clinical outcome evaluations and CBT response prediction in myotonic dystrophy. J Neuromuscul Dis. 2021;8(6):1031–46.PubMedPubMedCentralCrossRef
22.
go back to reference Signorelli M, Ebrahimpoor M, Veth O, Hettne K, Verwey N, García-Rodríguez R, et al. Peripheral blood transcriptome profiling enables monitoring disease progression in dystrophic mice and patients. EMBO Mol Med. 2021;13(4):e13328.PubMedPubMedCentralCrossRef Signorelli M, Ebrahimpoor M, Veth O, Hettne K, Verwey N, García-Rodríguez R, et al. Peripheral blood transcriptome profiling enables monitoring disease progression in dystrophic mice and patients. EMBO Mol Med. 2021;13(4):e13328.PubMedPubMedCentralCrossRef
23.
go back to reference Byrne LM, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RAC, et al. Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol. 2017;16(8):601–9.PubMedPubMedCentralCrossRef Byrne LM, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RAC, et al. Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol. 2017;16(8):601–9.PubMedPubMedCentralCrossRef
24.
go back to reference Spijker S, Van Zanten JS, De Jong S, Penninx BWJH, Van Dyck R, Zitman FG, et al. Stimulated gene expression profiles as a blood marker of major depressive disorder. Biol Psychiatry. 2010;68(2):179–86.PubMedCrossRef Spijker S, Van Zanten JS, De Jong S, Penninx BWJH, Van Dyck R, Zitman FG, et al. Stimulated gene expression profiles as a blood marker of major depressive disorder. Biol Psychiatry. 2010;68(2):179–86.PubMedCrossRef
25.
go back to reference Sznajder ŁJ, Scotti MM, Shin J, Taylor K, Ivankovic F, Nutter CA, et al. Loss of MBNL1 induces RNA misprocessing in the thymus and peripheral blood. Nat Commun. 2020;11(1):2022. Sznajder ŁJ, Scotti MM, Shin J, Taylor K, Ivankovic F, Nutter CA, et al. Loss of MBNL1 induces RNA misprocessing in the thymus and peripheral blood. Nat Commun. 2020;11(1):2022.
26.
go back to reference Heatwole CR, Miller J, Martens B, Moxley RT. Laboratory abnormalities in ambulatory patients with myotonic dystrophy type 1. Arch Neurol. 2006;63(8):1149–53.PubMedCrossRef Heatwole CR, Miller J, Martens B, Moxley RT. Laboratory abnormalities in ambulatory patients with myotonic dystrophy type 1. Arch Neurol. 2006;63(8):1149–53.PubMedCrossRef
27.
go back to reference Hermans MCE, Hoeijmakers JGJ, Faber CG, Merkies ISJ. Reconstructing the Rasch-built myotonic dystrophy type 1 activity and participation scale. PLoS One. 2015;10(10):e0139944. Hermans MCE, Hoeijmakers JGJ, Faber CG, Merkies ISJ. Reconstructing the Rasch-built myotonic dystrophy type 1 activity and participation scale. PLoS One. 2015;10(10):e0139944.
29.
go back to reference Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17(1):10–2. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17(1):10–2.
30.
go back to reference Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.PubMedCrossRef Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.PubMedCrossRef
31.
32.
go back to reference Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 2017;27(3):491–9.PubMedPubMedCentralCrossRef Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 2017;27(3):491–9.PubMedPubMedCentralCrossRef
33.
go back to reference Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5.PubMedCrossRef Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5.PubMedCrossRef
34.
go back to reference Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.PubMedCrossRef Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.PubMedCrossRef
35.
go back to reference Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. 2017;6:e26476.PubMedPubMedCentralCrossRef Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. 2017;6:e26476.PubMedPubMedCentralCrossRef
36.
go back to reference Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019;11(1):34.PubMedPubMedCentralCrossRef Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019;11(1):34.PubMedPubMedCentralCrossRef
38.
go back to reference Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples [Internet]. bioRxiv [Preprint]. 2017 [cited 2021 Sep 01]. https://doi.org/10.1101/201178. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples [Internet]. bioRxiv [Preprint]. 2017 [cited 2021 Sep 01]. https://​doi.​org/​10.​1101/​201178.
40.
go back to reference Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A. 2014;111(51):E5593–601.PubMedPubMedCentralCrossRef Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A. 2014;111(51):E5593–601.PubMedPubMedCentralCrossRef
44.
45.
go back to reference Schwender H, Müller T. Computing thousands of test statistics simultaneously in R. Stat. Comput Graph. 2007;18(1):5–11. Schwender H, Müller T. Computing thousands of test statistics simultaneously in R. Stat. Comput Graph. 2007;18(1):5–11.
47.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.PubMedCrossRef Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.PubMedCrossRef
48.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.PubMedPubMedCentralCrossRef
49.
go back to reference Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.CrossRef Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.CrossRef
50.
go back to reference Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82(13):1–26.CrossRef Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82(13):1–26.CrossRef
51.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.
52.
go back to reference Zhao S, Guo Y, Sheng Q, Shyr Y. Heatmap3: an improved heatmap package with more powerful and convenient features. BMC Bioinforma. 2014;15(10):1–2. Zhao S, Guo Y, Sheng Q, Shyr Y. Heatmap3: an improved heatmap package with more powerful and convenient features. BMC Bioinforma. 2014;15(10):1–2.
53.
go back to reference Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. R package “corrplot”: visualization of a correlation matrix. Statistician. 2017;56:316–24. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. R package “corrplot”: visualization of a correlation matrix. Statistician. 2017;56:316–24.
55.
go back to reference Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.CrossRef Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.CrossRef
56.
57.
go back to reference Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8.PubMedPubMedCentralCrossRef Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8.PubMedPubMedCentralCrossRef
58.
go back to reference Heskamp L, Okkersen K, van Nimwegen MV, Ploegmakers MJ, Bassez G, Deux JF, et al. Quantitative muscle MRI depicts increased muscle mass after a behavioral change in myotonic dystrophy type 1. Radiology. 2020;297:132–42.PubMedCrossRef Heskamp L, Okkersen K, van Nimwegen MV, Ploegmakers MJ, Bassez G, Deux JF, et al. Quantitative muscle MRI depicts increased muscle mass after a behavioral change in myotonic dystrophy type 1. Radiology. 2020;297:132–42.PubMedCrossRef
59.
go back to reference Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, et al. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics. 2017;18(8):111–23. Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, et al. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics. 2017;18(8):111–23.
60.
go back to reference Jiménez JP, Botto A, Herrera L, Leighton C, Rossi JL, Quevedo Y, et al. Psychotherapy and genetic neuroscience: an emerging dialog. Front Genet. 2018;9:257.PubMedPubMedCentralCrossRef Jiménez JP, Botto A, Herrera L, Leighton C, Rossi JL, Quevedo Y, et al. Psychotherapy and genetic neuroscience: an emerging dialog. Front Genet. 2018;9:257.PubMedPubMedCentralCrossRef
61.
go back to reference Li D, Achkar JP, Haritunians T, Jacobs JP, Hui KY, D’Amato M, et al. A pleiotropic missense variant in SLC39A8 is associated with Crohn’s disease and human gut microbiome composition. Gastroenterology. 2016;151(4):724–32.PubMedCrossRef Li D, Achkar JP, Haritunians T, Jacobs JP, Hui KY, D’Amato M, et al. A pleiotropic missense variant in SLC39A8 is associated with Crohn’s disease and human gut microbiome composition. Gastroenterology. 2016;151(4):724–32.PubMedCrossRef
63.
go back to reference Liu Y, Jurczak MJ, Lear TB, Lin B, Larsen MB, Kennerdell JR, et al. A Fbxo48 inhibitor prevents pAMPKα degradation and ameliorates insulin resistance. Nat Chem Biol. 2021;17(3):298–306.PubMedPubMedCentralCrossRef Liu Y, Jurczak MJ, Lear TB, Lin B, Larsen MB, Kennerdell JR, et al. A Fbxo48 inhibitor prevents pAMPKα degradation and ameliorates insulin resistance. Nat Chem Biol. 2021;17(3):298–306.PubMedPubMedCentralCrossRef
64.
go back to reference Nieuwenhuis S, Okkersen K, Widomska J, Blom P, ‘t Hoen PAC, van Engelen B, et al. Insulin signaling as a key moderator in myotonic dystrophy type 1. Front Neurol. 2019;10:1229. Nieuwenhuis S, Okkersen K, Widomska J, Blom P, ‘t Hoen PAC, van Engelen B, et al. Insulin signaling as a key moderator in myotonic dystrophy type 1. Front Neurol. 2019;10:1229.
65.
go back to reference Gulley LD, Shomaker LB, Kelly NR, Chen KY, Stice E, Olsen CH, et al. Indirect effects of a cognitive-behavioral intervention on adolescent weight and insulin resistance through decreasing depression in a randomized controlled trial. J Pediatr Psychol. 2019;44(10):1163–73.PubMedPubMedCentralCrossRef Gulley LD, Shomaker LB, Kelly NR, Chen KY, Stice E, Olsen CH, et al. Indirect effects of a cognitive-behavioral intervention on adolescent weight and insulin resistance through decreasing depression in a randomized controlled trial. J Pediatr Psychol. 2019;44(10):1163–73.PubMedPubMedCentralCrossRef
66.
go back to reference Bassez G, Audureau E, Hogrel JY, Arrouasse R, Baghdoyan S, Bhugaloo H, et al. Improved mobility with metformin in patients with myotonic dystrophy type 1: a randomized controlled trial. Brain. 2018;141(10):2855–65.PubMedCrossRef Bassez G, Audureau E, Hogrel JY, Arrouasse R, Baghdoyan S, Bhugaloo H, et al. Improved mobility with metformin in patients with myotonic dystrophy type 1: a randomized controlled trial. Brain. 2018;141(10):2855–65.PubMedCrossRef
68.
69.
go back to reference Thakur SS, Swiderski K, Ryall JG, Lynch GS. Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions. Philos Trans R Soc B Biol Sci. 2018;373(1738):20160528. Thakur SS, Swiderski K, Ryall JG, Lynch GS. Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions. Philos Trans R Soc B Biol Sci. 2018;373(1738):20160528.
71.
go back to reference Zhao L, Son JS, Wang B, Tian Q, Chen Y, Liu X, et al. Retinoic acid signalling in fibro/adipogenic progenitors robustly enhances muscle regeneration. EBioMedicine. 2020;60:103020. Zhao L, Son JS, Wang B, Tian Q, Chen Y, Liu X, et al. Retinoic acid signalling in fibro/adipogenic progenitors robustly enhances muscle regeneration. EBioMedicine. 2020;60:103020.
72.
go back to reference Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther. 2013;139(1):32.PubMedPubMedCentralCrossRef Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther. 2013;139(1):32.PubMedPubMedCentralCrossRef
73.
go back to reference Lourbakos A, Yau N, De Bruijn P, Hiller M, Kozaczynska K, Jean-Baptiste R, et al. Evaluation of serum MMP-9 as predictive biomarker for antisense therapy in Duchenne. Sci Report. 2017;7(1):1–10.CrossRef Lourbakos A, Yau N, De Bruijn P, Hiller M, Kozaczynska K, Jean-Baptiste R, et al. Evaluation of serum MMP-9 as predictive biomarker for antisense therapy in Duchenne. Sci Report. 2017;7(1):1–10.CrossRef
76.
go back to reference Wei C, Stock L, Valanejad L, Zalewski ZA, Karns R, Puymirat J, et al. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASEB J. 2018;32(4):2073–85.PubMedPubMedCentralCrossRef Wei C, Stock L, Valanejad L, Zalewski ZA, Karns R, Puymirat J, et al. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASEB J. 2018;32(4):2073–85.PubMedPubMedCentralCrossRef
77.
go back to reference Wang M, Weng W-C, Stock L, Lindquist D, Martinez A, Gourdon G, et al. Correction of glycogen synthase kinase 3β in myotonic dystrophy 1 reduces the mutant RNA and improves postnatal survival of DMSXL mice. Mol Cell Biol. 2019;39(21):e00155–19.PubMedPubMedCentralCrossRef Wang M, Weng W-C, Stock L, Lindquist D, Martinez A, Gourdon G, et al. Correction of glycogen synthase kinase 3β in myotonic dystrophy 1 reduces the mutant RNA and improves postnatal survival of DMSXL mice. Mol Cell Biol. 2019;39(21):e00155–19.PubMedPubMedCentralCrossRef
78.
go back to reference van Engelen B, Abghari S, Aschrafi A, Bouman S, Cornelissen Y, Glennon J, et al. Cognitive behaviour therapy plus aerobic exercise training to increase activity in patients with myotonic dystrophy type 1 (DM1) compared to usual care (OPTIMISTIC): Study protocol for randomised controlled trial. Trials. 2015;16:224. van Engelen B, Abghari S, Aschrafi A, Bouman S, Cornelissen Y, Glennon J, et al. Cognitive behaviour therapy plus aerobic exercise training to increase activity in patients with myotonic dystrophy type 1 (DM1) compared to usual care (OPTIMISTIC): Study protocol for randomised controlled trial. Trials. 2015;16:224.
Metadata
Title
Clinical improvement of DM1 patients reflected by reversal of disease-induced gene expression in blood
Authors
Remco T. P. van Cruchten
Daniël van As
Jeffrey C. Glennon
Baziel G. M. van Engelen
Peter A. C. ‘t Hoen
the OPTIMISTIC consortium
the ReCognitION consortium
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02591-y

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue