Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Research article

NeRD: a multichannel neural network to predict cellular response of drugs by integrating multidimensional data

Authors: Xiaoxiao Cheng, Chong Dai, Yuqi Wen, Xiaoqi Wang, Xiaochen Bo, Song He, Shaoliang Peng

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Considering the heterogeneity of tumors, it is a key issue in precision medicine to predict the drug response of each individual. The accumulation of various types of drug informatics and multi-omics data facilitates the development of efficient models for drug response prediction. However, the selection of high-quality data sources and the design of suitable methods remain a challenge.

Methods

In this paper, we design NeRD, a multidimensional data integration model based on the PRISM drug response database, to predict the cellular response of drugs. Four feature extractors, including drug structure extractor (DSE), molecular fingerprint extractor (MFE), miRNA expression extractor (mEE), and copy number extractor (CNE), are designed for different types and dimensions of data. A fully connected network is used to fuse all features and make predictions.

Results

Experimental results demonstrate the effective integration of the global and local structural features of drugs, as well as the features of cell lines from different omics data. For all metrics tested on the PRISM database, NeRD surpassed previous approaches. We also verified that NeRD has strong reliability in the prediction results of new samples. Moreover, unlike other algorithms, when the amount of training data was reduced, NeRD maintained stable performance.

Conclusions

NeRD’s feature fusion provides a new idea for drug response prediction, which is of great significance for precise cancer treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.PubMedCrossRef Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.PubMedCrossRef
3.
go back to reference Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinform. 2017;18(5):820–9. Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinform. 2017;18(5):820–9.
4.
go back to reference Baptista D, Ferreira PG, Rocha M. Deep learning for drug response prediction in cancer. Brief Bioinform. 2021;22(1):360–79.PubMedCrossRef Baptista D, Ferreira PG, Rocha M. Deep learning for drug response prediction in cancer. Brief Bioinform. 2021;22(1):360–79.PubMedCrossRef
5.
go back to reference Garraway LA, Verweij J, Ballman KV, et al. Precision oncology: an overview. J Clin Oncol. 2013;31(15):1803–5.PubMedCrossRef Garraway LA, Verweij J, Ballman KV, et al. Precision oncology: an overview. J Clin Oncol. 2013;31(15):1803–5.PubMedCrossRef
8.
go back to reference Rahman R, Dhruba SR, Matlock K, De-Niz C, Ghosh S, Pal R. Evaluating the consistency of large-scale pharmacogenomic studies. Brief Bioinform. 2019;20(5):1734–53.PubMedPubMedCentralCrossRef Rahman R, Dhruba SR, Matlock K, De-Niz C, Ghosh S, Pal R. Evaluating the consistency of large-scale pharmacogenomic studies. Brief Bioinform. 2019;20(5):1734–53.PubMedPubMedCentralCrossRef
9.
go back to reference Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2012;41(D1):D955–61.PubMedPubMedCentralCrossRef Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2012;41(D1):D955–61.PubMedPubMedCentralCrossRef
11.
go back to reference Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6(10):813–23.PubMedCrossRef Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6(10):813–23.PubMedCrossRef
13.
go back to reference Yu C, Mannan AM, Yvone GM, Ross KN, Zhang YL, Marton MA, et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat Biotechnol. 2016;34(4):419–23.PubMedPubMedCentralCrossRef Yu C, Mannan AM, Yvone GM, Ross KN, Zhang YL, Marton MA, et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat Biotechnol. 2016;34(4):419–23.PubMedPubMedCentralCrossRef
15.
go back to reference Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE. 2013;8(4): e61318.PubMedPubMedCentralCrossRef Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE. 2013;8(4): e61318.PubMedPubMedCentralCrossRef
16.
go back to reference Liu C, Wei D, Xiang J, Ren F, Huang L, Lang J, et al. An improved anticancer drug-response prediction based on an ensemble method integrating matrix completion and ridge regression. Mol Ther Nucleic Acids. 2020;21:676–86.PubMedPubMedCentralCrossRef Liu C, Wei D, Xiang J, Ren F, Huang L, Lang J, et al. An improved anticancer drug-response prediction based on an ensemble method integrating matrix completion and ridge regression. Mol Ther Nucleic Acids. 2020;21:676–86.PubMedPubMedCentralCrossRef
17.
go back to reference Huang EW, Bhope A, Lim J, Sinha S, Emad A. Tissue-guided LASSO for prediction of clinical drug response using preclinical samples. PLoS Comput Biol. 2020;16(1): e1007607.PubMedPubMedCentralCrossRef Huang EW, Bhope A, Lim J, Sinha S, Emad A. Tissue-guided LASSO for prediction of clinical drug response using preclinical samples. PLoS Comput Biol. 2020;16(1): e1007607.PubMedPubMedCentralCrossRef
18.
go back to reference Clayton EA, Pujol TA, McDonald JF, Qiu P. Leveraging TCGA gene expression data to build predictive models for cancer drug response. BMC Bioinforma. 2020;21(14):1–11. Clayton EA, Pujol TA, McDonald JF, Qiu P. Leveraging TCGA gene expression data to build predictive models for cancer drug response. BMC Bioinforma. 2020;21(14):1–11.
19.
go back to reference Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12.PubMedPubMedCentralCrossRef Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12.PubMedPubMedCentralCrossRef
20.
go back to reference Ammad-Ud-Din M, Khan SA, Malani D, Murumägi A, Kallioniemi O, Aittokallio T, et al. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization. Bioinformatics. 2016;32(17):i455-63.PubMedCrossRef Ammad-Ud-Din M, Khan SA, Malani D, Murumägi A, Kallioniemi O, Aittokallio T, et al. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization. Bioinformatics. 2016;32(17):i455-63.PubMedCrossRef
21.
go back to reference Berlow N, Haider S, Wan Q, Geltzeiler M, Davis LE, Keller C, et al. An integrated approach to anti-cancer drug sensitivity prediction. IEEE/ACM Trans Comput Biol Bioinform. 2014;11(6):995–1008.PubMedCrossRef Berlow N, Haider S, Wan Q, Geltzeiler M, Davis LE, Keller C, et al. An integrated approach to anti-cancer drug sensitivity prediction. IEEE/ACM Trans Comput Biol Bioinform. 2014;11(6):995–1008.PubMedCrossRef
22.
go back to reference Yuan H, Paskov I, Paskov H, González AJ, Leslie CS. Multitask learning improves prediction of cancer drug sensitivity. Sci Rep. 2016;6(1):1–11. Yuan H, Paskov I, Paskov H, González AJ, Leslie CS. Multitask learning improves prediction of cancer drug sensitivity. Sci Rep. 2016;6(1):1–11.
23.
go back to reference Sharma A, Rani R. Drug sensitivity prediction framework using ensemble and multi-task learning. Int J Mach Learn Cybern. 2020;11(6):1231–40.CrossRef Sharma A, Rani R. Drug sensitivity prediction framework using ensemble and multi-task learning. Int J Mach Learn Cybern. 2020;11(6):1231–40.CrossRef
24.
go back to reference Nguyen TT, Nguyen GTT, Nguyen T, Le DH. Graph convolutional networks for drug response prediction. IEEE/ACM Trans Comput Biol Bioinform. 2021;19(1):146–54. Nguyen TT, Nguyen GTT, Nguyen T, Le DH. Graph convolutional networks for drug response prediction. IEEE/ACM Trans Comput Biol Bioinform. 2021;19(1):146–54.
25.
go back to reference Parca L, Pepe G, Pietrosanto M, Galvan G, Galli L, Palmeri A, et al. Modeling cancer drug response through drug-specific informative genes. Sci Rep. 2019;9(1):1–11.CrossRef Parca L, Pepe G, Pietrosanto M, Galvan G, Galli L, Palmeri A, et al. Modeling cancer drug response through drug-specific informative genes. Sci Rep. 2019;9(1):1–11.CrossRef
26.
go back to reference Naulaerts S, Menden MP, Ballester PJ. Concise polygenic models for cancer-specific identification of drug-sensitive tumors from their multi-omics profiles. Biomolecules. 2020;10(6):963.PubMedCentralCrossRef Naulaerts S, Menden MP, Ballester PJ. Concise polygenic models for cancer-specific identification of drug-sensitive tumors from their multi-omics profiles. Biomolecules. 2020;10(6):963.PubMedCentralCrossRef
27.
go back to reference Huang C, Clayton EA, Matyunina LV, McDonald L, Benigno BB, Vannberg F, et al. Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy. Sci Rep. 2018;8(1):1–8.CrossRef Huang C, Clayton EA, Matyunina LV, McDonald L, Benigno BB, Vannberg F, et al. Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy. Sci Rep. 2018;8(1):1–8.CrossRef
28.
go back to reference Firoozbakht F, Yousefi B, Schwikowski B. An overview of machine learning methods for monotherapy drug response prediction. Brief Bioinform. 2022;23(1):bbab408.PubMedCrossRef Firoozbakht F, Yousefi B, Schwikowski B. An overview of machine learning methods for monotherapy drug response prediction. Brief Bioinform. 2022;23(1):bbab408.PubMedCrossRef
29.
go back to reference Emdadi A, Eslahchi C. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model. BMC Bioinformatics. 2021;22(1):1–22.CrossRef Emdadi A, Eslahchi C. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model. BMC Bioinformatics. 2021;22(1):1–22.CrossRef
30.
go back to reference Rampášek L, Hidru D, Smirnov P, Haibe-Kains B, Goldenberg A. Dr. VAE: improving drug response prediction via modeling of drug perturbation effects. Bioinformatics. 2019;35(19):3743–51.PubMedPubMedCentralCrossRef Rampášek L, Hidru D, Smirnov P, Haibe-Kains B, Goldenberg A. Dr. VAE: improving drug response prediction via modeling of drug perturbation effects. Bioinformatics. 2019;35(19):3743–51.PubMedPubMedCentralCrossRef
31.
go back to reference Chang Y, Park H, Yang HJ, Lee S, Lee KY, Kim TS, et al. Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci Rep. 2018;8(1):1–11. Chang Y, Park H, Yang HJ, Lee S, Lee KY, Kim TS, et al. Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci Rep. 2018;8(1):1–11.
32.
go back to reference Su R, Liu X, Xiao G, Wei L. Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction. Brief Bioinform. 2020;21(3):996–1005.PubMedCrossRef Su R, Liu X, Xiao G, Wei L. Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction. Brief Bioinform. 2020;21(3):996–1005.PubMedCrossRef
33.
go back to reference Liu P, Li H, Li S, Leung KS. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network. BMC Bioinforma. 2019;20(1):1–14.CrossRef Liu P, Li H, Li S, Leung KS. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network. BMC Bioinforma. 2019;20(1):1–14.CrossRef
34.
go back to reference Liu Q, Hu Z, Jiang R, Zhou M. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. Bioinformatics. 2020;36(Supplement-2):i911–8.PubMedCrossRef Liu Q, Hu Z, Jiang R, Zhou M. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. Bioinformatics. 2020;36(Supplement-2):i911–8.PubMedCrossRef
35.
go back to reference Landrum G. RDKit documentation. Release. 2013;1:1–79. Landrum G. RDKit documentation. Release. 2013;1:1–79.
39.
go back to reference Solomon DA, Kim JS, Ressom HW, Sibenaller Z, Ryken T, Jean W, et al. Sample type bias in the analysis of cancer genomes. Cancer Res. 2009;69(14):5630–3.PubMedPubMedCentralCrossRef Solomon DA, Kim JS, Ressom HW, Sibenaller Z, Ryken T, Jean W, et al. Sample type bias in the analysis of cancer genomes. Cancer Res. 2009;69(14):5630–3.PubMedPubMedCentralCrossRef
40.
41.
go back to reference Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.PubMedCrossRef Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.PubMedCrossRef
42.
go back to reference Jolly S, Lang V, Koelzer VH, Frigerio CS, Magno L, Salinas PC, et al. Single-cell quantification of mRNA expression in the human brain. Sci Rep. 2019;9(1):1–9.CrossRef Jolly S, Lang V, Koelzer VH, Frigerio CS, Magno L, Salinas PC, et al. Single-cell quantification of mRNA expression in the human brain. Sci Rep. 2019;9(1):1–9.CrossRef
43.
go back to reference Qin C, Shi G, Tao J, Yu H, Jin Y, Lei J, et al. Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network. Mech Syst Signal Process. 2021;151:107386.CrossRef Qin C, Shi G, Tao J, Yu H, Jin Y, Lei J, et al. Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network. Mech Syst Signal Process. 2021;151:107386.CrossRef
44.
go back to reference Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET). Piscataway: IEEE; 2017. p. 1–6. Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET). Piscataway: IEEE; 2017. p. 1–6.
45.
go back to reference Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018;77:354–77.CrossRef Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018;77:354–77.CrossRef
46.
go back to reference Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT press; 2016. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT press; 2016.
47.
go back to reference Akhtar N, Ragavendran U. Interpretation of intelligence in CNN-pooling processes: a methodological survey. Neural Comput Appl. 2020;32(3):879–98.CrossRef Akhtar N, Ragavendran U. Interpretation of intelligence in CNN-pooling processes: a methodological survey. Neural Comput Appl. 2020;32(3):879–98.CrossRef
48.
go back to reference Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2(4):433–59.CrossRef Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2(4):433–59.CrossRef
49.
go back to reference Zabalza J, Ren J, Zheng J, Zhao H, Qing C, Yang Z, et al. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing. 2016;185:1–10.CrossRef Zabalza J, Ren J, Zheng J, Zhao H, Qing C, Yang Z, et al. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing. 2016;185:1–10.CrossRef
50.
go back to reference Xie R, Wen J, Quitadamo A, Cheng J, Shi X. A deep auto-encoder model for gene expression prediction. BMC Genom. 2017;18(9):39–49. Xie R, Wen J, Quitadamo A, Cheng J, Shi X. A deep auto-encoder model for gene expression prediction. BMC Genom. 2017;18(9):39–49.
51.
go back to reference Kipf TN, Welling M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv e-prints. 2016;p. arXiv:1609.02907. Kipf TN, Welling M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv e-prints. 2016;p. arXiv:1609.02907.
52.
go back to reference Wang L, Li X, Zhang L, Gao Q. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. BMC Cancer. 2017;17(1):1–12.CrossRef Wang L, Li X, Zhang L, Gao Q. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. BMC Cancer. 2017;17(1):1–12.CrossRef
53.
go back to reference Dong H, Xie J, Jing Z, Ren D. Variational Autoencoder for Anti-Cancer Drug Response Prediction. arXiv e-prints. 2020;p.arXiv:2008.09763. Dong H, Xie J, Jing Z, Ren D. Variational Autoencoder for Anti-Cancer Drug Response Prediction. arXiv e-prints. 2020;p.arXiv:2008.09763.
54.
go back to reference Chen Y, Zhang L. How much can deep learning improve prediction of the responses to drugs in cancer cell lines? Brief Bioinform. 2022;23(1):bbab378. Chen Y, Zhang L. How much can deep learning improve prediction of the responses to drugs in cancer cell lines? Brief Bioinform. 2022;23(1):bbab378.
55.
go back to reference Zhu Y, Brettin T, Evrard YA, Partin A, Xia F, Shukla M, et al. Ensemble transfer learning for the prediction of anti-cancer drug response. Sci Rep. 2020;10(1):1–11.CrossRef Zhu Y, Brettin T, Evrard YA, Partin A, Xia F, Shukla M, et al. Ensemble transfer learning for the prediction of anti-cancer drug response. Sci Rep. 2020;10(1):1–11.CrossRef
56.
go back to reference Pedersen SF, Stock C. Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Res. 2013;73(6):1658–61.PubMedCrossRef Pedersen SF, Stock C. Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Res. 2013;73(6):1658–61.PubMedCrossRef
58.
go back to reference Julien SG, Dubé N, Hardy S, Tremblay ML. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer. 2011;11(1):35–49.PubMedCrossRef Julien SG, Dubé N, Hardy S, Tremblay ML. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer. 2011;11(1):35–49.PubMedCrossRef
59.
go back to reference Feng M, Jiang W, Kim B, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 2019;19(10):568–86.PubMedPubMedCentralCrossRef Feng M, Jiang W, Kim B, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 2019;19(10):568–86.PubMedPubMedCentralCrossRef
60.
go back to reference Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer. 2021;21(3):181–97.PubMedCrossRef Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer. 2021;21(3):181–97.PubMedCrossRef
63.
go back to reference Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol. 2018;19(11):697–712.PubMedCrossRef Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol. 2018;19(11):697–712.PubMedCrossRef
64.
go back to reference Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):1–14.CrossRef Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):1–14.CrossRef
65.
go back to reference Leroy C, Shen Q, Strande V, Meyer R, McLaughlin M, Lezan E, et al. CUB-domain-containing protein 1 overexpression in solid cancers promotes cancer cell growth by activating Src family kinases. Oncogene. 2015;34(44):5593–8.PubMedPubMedCentralCrossRef Leroy C, Shen Q, Strande V, Meyer R, McLaughlin M, Lezan E, et al. CUB-domain-containing protein 1 overexpression in solid cancers promotes cancer cell growth by activating Src family kinases. Oncogene. 2015;34(44):5593–8.PubMedPubMedCentralCrossRef
66.
go back to reference Hamanaka N, Nakanishi Y, Mizuno T, Horiguchi-Takei K, Akiyama N, Tanimura H, et al. YES1 is a targetable oncogene in cancers harboring YES1 gene amplification. Cancer Res. 2019;79(22):5734–45.PubMedCrossRef Hamanaka N, Nakanishi Y, Mizuno T, Horiguchi-Takei K, Akiyama N, Tanimura H, et al. YES1 is a targetable oncogene in cancers harboring YES1 gene amplification. Cancer Res. 2019;79(22):5734–45.PubMedCrossRef
67.
go back to reference Wang WH, Zhan JM, Tang YL, Zhou N, Liu WY, Jiang DW. miR-466 contributes to the enhanced antitumor effect of bortezomib on non-small-cell lung cancer by inhibiting CCND1. Chemotherapy. 2022;67(2):110–22. Wang WH, Zhan JM, Tang YL, Zhou N, Liu WY, Jiang DW. miR-466 contributes to the enhanced antitumor effect of bortezomib on non-small-cell lung cancer by inhibiting CCND1. Chemotherapy. 2022;67(2):110–22.
68.
go back to reference Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, et al. Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res. 2012;18(18):4973–85.PubMedPubMedCentralCrossRef Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, et al. Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res. 2012;18(18):4973–85.PubMedPubMedCentralCrossRef
69.
go back to reference Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 2008;68(8):2850–60.PubMedCrossRef Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 2008;68(8):2850–60.PubMedCrossRef
70.
go back to reference Wong HN, Lewies A, Haigh M, Viljoen JM, Wentzel JF, Haynes RK, et al. Anti-melanoma activities of artemisone and prenylated amino-artemisinins in combination with known anticancer drugs. Front Pharmacol. 2020;11:1543. Wong HN, Lewies A, Haigh M, Viljoen JM, Wentzel JF, Haynes RK, et al. Anti-melanoma activities of artemisone and prenylated amino-artemisinins in combination with known anticancer drugs. Front Pharmacol. 2020;11:1543.
71.
go back to reference Maquoi E, Sounni NE, Devy L, Olivier F, Frankenne F, Krell HW, et al. Anti-invasive, antitumoral, and antiangiogenic efficacy of a pyrimidine-2, 4, 6-trione derivative, an orally active and selective matrix metalloproteinases inhibitor. Clin Cancer Res. 2004;10(12):4038–47.PubMedCrossRef Maquoi E, Sounni NE, Devy L, Olivier F, Frankenne F, Krell HW, et al. Anti-invasive, antitumoral, and antiangiogenic efficacy of a pyrimidine-2, 4, 6-trione derivative, an orally active and selective matrix metalloproteinases inhibitor. Clin Cancer Res. 2004;10(12):4038–47.PubMedCrossRef
72.
go back to reference Cohen-Solal KA, Kaufman HL, Lasfar A. Transcription factors as critical players in melanoma invasiveness, drug resistance, and opportunities for therapeutic drug development. Pigment Cell Melanoma Res. 2018;31(2):241–52.PubMedCrossRef Cohen-Solal KA, Kaufman HL, Lasfar A. Transcription factors as critical players in melanoma invasiveness, drug resistance, and opportunities for therapeutic drug development. Pigment Cell Melanoma Res. 2018;31(2):241–52.PubMedCrossRef
73.
go back to reference Gopal YV, Gammon S, Prasad R, Knighton B, Pisaneschi F, Roszik J, et al. A novel mitochondrial inhibitor blocks MAPK pathway and overcomes MAPK inhibitor resistance in melanoma. Clin Cancer Res. 2019;25(21):6429–42.CrossRef Gopal YV, Gammon S, Prasad R, Knighton B, Pisaneschi F, Roszik J, et al. A novel mitochondrial inhibitor blocks MAPK pathway and overcomes MAPK inhibitor resistance in melanoma. Clin Cancer Res. 2019;25(21):6429–42.CrossRef
74.
go back to reference Ma L, Wei J, Su GH, Lin J. Dasatinib can enhance paclitaxel and gemcitabine inhibitory activity in human pancreatic cancer cells. Cancer Biol Ther. 2019;20(6):855–65.PubMedPubMedCentralCrossRef Ma L, Wei J, Su GH, Lin J. Dasatinib can enhance paclitaxel and gemcitabine inhibitory activity in human pancreatic cancer cells. Cancer Biol Ther. 2019;20(6):855–65.PubMedPubMedCentralCrossRef
75.
go back to reference Jimeno A, Hallur G, Chan A, Zhang X, Cusatis G, Chan F, et al. Development of two novel benzoylphenylurea sulfur analogues and evidence that the microtubule-associated protein tau is predictive of their activity in pancreatic cancer. Mol Cancer Ther. 2007;6(5):1509–16.PubMedCrossRef Jimeno A, Hallur G, Chan A, Zhang X, Cusatis G, Chan F, et al. Development of two novel benzoylphenylurea sulfur analogues and evidence that the microtubule-associated protein tau is predictive of their activity in pancreatic cancer. Mol Cancer Ther. 2007;6(5):1509–16.PubMedCrossRef
76.
go back to reference Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy. 2003;23(2):165–72.PubMedCrossRef Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy. 2003;23(2):165–72.PubMedCrossRef
77.
go back to reference Chaturvedi P, George V, Shrestha N, Wang M, Dee MJ, Zhu X, et al. Immunotherapeutic HCW9218 augments anti-tumor activity of chemotherapy via NK cell-mediated reduction of therapy-induced senescent cells. Mol Ther. 2022;30(3):1171–87. Chaturvedi P, George V, Shrestha N, Wang M, Dee MJ, Zhu X, et al. Immunotherapeutic HCW9218 augments anti-tumor activity of chemotherapy via NK cell-mediated reduction of therapy-induced senescent cells. Mol Ther. 2022;30(3):1171–87.
78.
go back to reference Nagaraju GP, Mezina A, Shaib WL, Landry J, El-Rayes BF. Targeting the Janus-activated kinase-2-STAT3 signalling pathway in pancreatic cancer using the HSP90 inhibitor ganetespib. Eur J Cancer. 2016;52:109–19.PubMedCrossRef Nagaraju GP, Mezina A, Shaib WL, Landry J, El-Rayes BF. Targeting the Janus-activated kinase-2-STAT3 signalling pathway in pancreatic cancer using the HSP90 inhibitor ganetespib. Eur J Cancer. 2016;52:109–19.PubMedCrossRef
79.
go back to reference Ogunleye AZ, Piyawajanusorn C, Gonçalves A, Ghislat G, Ballester PJ. Interpretable machine learning models to predict the resistance of breast cancer patients to doxorubicin from their microRNA profiles. Adv Sci. 2022;9:2201501. Ogunleye AZ, Piyawajanusorn C, Gonçalves A, Ghislat G, Ballester PJ. Interpretable machine learning models to predict the resistance of breast cancer patients to doxorubicin from their microRNA profiles. Adv Sci. 2022;9:2201501.
Metadata
Title
NeRD: a multichannel neural network to predict cellular response of drugs by integrating multidimensional data
Authors
Xiaoxiao Cheng
Chong Dai
Yuqi Wen
Xiaoqi Wang
Xiaochen Bo
Song He
Shaoliang Peng
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02549-0

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue