Skip to main content
Top
Published in: BMC Medicine 1/2021

01-12-2021 | Tuberculosis | Research article

Achieving a “step change” in the tuberculosis epidemic through comprehensive community-wide intervention: a model-based analysis

Authors: Sourya Shrestha, Emily A. Kendall, Rebekah Chang, Roy Joseph, Parastu Kasaie, Laura Gillini, Anthony Todd Fojo, Michael Campbell, Nimalan Arinaminpathy, David W. Dowdy

Published in: BMC Medicine | Issue 1/2021

Login to get access

Abstract

Background

Global progress towards reducing tuberculosis (TB) incidence and mortality has consistently lagged behind the World Health Organization targets leading to a perception that large reductions in TB burden cannot be achieved. However, several recent and historical trials suggest that intervention efforts that are comprehensive and intensive can have a substantial epidemiological impact. We aimed to quantify the potential epidemiological impact of an intensive but realistic, community-wide campaign utilizing existing tools and designed to achieve a “step change” in the TB burden.

Methods

We developed a compartmental model that resembled TB transmission and epidemiology of a mid-sized city in India, the country with the greatest absolute TB burden worldwide. We modeled the impact of a one-time, community-wide screening campaign, with treatment for TB disease and preventive therapy for latent TB infection (LTBI). This one-time intervention was followed by the strengthening of the tuberculosis-related health system, potentially facilitated by leveraging the one-time campaign. We estimated the tuberculosis cases and deaths that could be averted over 10 years using this comprehensive approach and assessed the contributions of individual components of the intervention.

Results

A campaign that successfully screened 70% of the adult population for active and latent tuberculosis and subsequently reduced diagnostic and treatment delays and unsuccessful treatment outcomes by 50% was projected to avert 7800 (95% range 5450–10,200) cases and 1710 (1290–2180) tuberculosis-related deaths per 1 million population over 10 years. Of the total averted deaths, 33.5% (28.2–38.3) were attributable to the inclusion of preventive therapy and 52.9% (48.4–56.9) to health system strengthening.

Conclusions

A one-time, community-wide mass campaign, comprehensively designed to detect, treat, and prevent tuberculosis with currently existing tools can have a meaningful and long-lasting epidemiological impact. Successful treatment of LTBI is critical to achieving this result. Health system strengthening is essential to any effort to transform the TB response.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Global Tuberculosis Report. Geneva. Switzerland. 2020;2020. World Health Organization. Global Tuberculosis Report. Geneva. Switzerland. 2020;2020.
7.
go back to reference Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, Adhikari LM, Carter EJ, Puri L, Codlin AJ, Creswell J. Using artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systems. Scientific Reports. 2019;9(1):1-0. Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, Adhikari LM, Carter EJ, Puri L, Codlin AJ, Creswell J. Using artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systems. Scientific Reports. 2019;9(1):1-0.
11.
21.
go back to reference Vynnycky E, Fine PE. The annual risk of infection with Mycobacterium tuberculosis in England and Wales since 1901. The International Journal of Tuberculosis and Lung Disease. 1997;1(5):389–96.PubMed Vynnycky E, Fine PE. The annual risk of infection with Mycobacterium tuberculosis in England and Wales since 1901. The International Journal of Tuberculosis and Lung Disease. 1997;1(5):389–96.PubMed
24.
go back to reference Ragonnet R, Flegg JA, Brilleman SL, Tiemersma EW, Melsew YA, McBryde ES, Trauer JM. Revisiting the natural history of pulmonary tuberculosis: a Bayesian estimation of natural recovery and mortality rates. Clinical Infectious Diseases. 2020:ciaa602. Ragonnet R, Flegg JA, Brilleman SL, Tiemersma EW, Melsew YA, McBryde ES, Trauer JM. Revisiting the natural history of pulmonary tuberculosis: a Bayesian estimation of natural recovery and mortality rates. Clinical Infectious Diseases. 2020:ciaa602.
27.
go back to reference Gopi PG, Venkatesh Prasad V, Vasantha M, Subramani R, Tholkappian AS, Sargunan D, et al. Annual risk of tuberculosis infection in Chennai city. Indian Journal of Tuberculosis. 2008;55(3):157–61. Gopi PG, Venkatesh Prasad V, Vasantha M, Subramani R, Tholkappian AS, Sargunan D, et al. Annual risk of tuberculosis infection in Chennai city. Indian Journal of Tuberculosis. 2008;55(3):157–61.
28.
33.
go back to reference Pease C, Hutton B, Yazdi F, Wolfe D, Hamel C, Quach P, et al. Efficacy and completion rates of rifapentine and isoniazid (3HP) compared to other treatment regimens for latent tuberculosis infection: a systematic review with network meta-analyses. BMC Infectious Diseases. 2017;17(1):1–1.CrossRef Pease C, Hutton B, Yazdi F, Wolfe D, Hamel C, Quach P, et al. Efficacy and completion rates of rifapentine and isoniazid (3HP) compared to other treatment regimens for latent tuberculosis infection: a systematic review with network meta-analyses. BMC Infectious Diseases. 2017;17(1):1–1.CrossRef
36.
go back to reference WHO Tuberculosis Research Office. FURTHER studies of geographic variation in naturally acquired tuberculin sensitivity. Bulletin of the World Health Organization. 1955;12:63–83 ISSN 0042-9686.PubMedCentral WHO Tuberculosis Research Office. FURTHER studies of geographic variation in naturally acquired tuberculin sensitivity. Bulletin of the World Health Organization. 1955;12:63–83 ISSN 0042-9686.PubMedCentral
39.
40.
go back to reference Mistry N, Rangan S, Dholakia Y, Lobo E, Shah S, Patil A. Durations and delays in care seeking, diagnosis and treatment initiation in uncomplicated pulmonary tuberculosis patients in Mumbai. India. PloS One. 2018;11(3):e0152287.CrossRef Mistry N, Rangan S, Dholakia Y, Lobo E, Shah S, Patil A. Durations and delays in care seeking, diagnosis and treatment initiation in uncomplicated pulmonary tuberculosis patients in Mumbai. India. PloS One. 2018;11(3):e0152287.CrossRef
53.
go back to reference Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ. 2018;362. Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ. 2018;362.
Metadata
Title
Achieving a “step change” in the tuberculosis epidemic through comprehensive community-wide intervention: a model-based analysis
Authors
Sourya Shrestha
Emily A. Kendall
Rebekah Chang
Roy Joseph
Parastu Kasaie
Laura Gillini
Anthony Todd Fojo
Michael Campbell
Nimalan Arinaminpathy
David W. Dowdy
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2021
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-02110-5

Other articles of this Issue 1/2021

BMC Medicine 1/2021 Go to the issue