Skip to main content
Top
Published in: BMC Medicine 1/2019

Open Access 01-12-2019 | Vaccination | Research article

RETRACTED ARTICLE: Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis

Authors: Amir Abbas Momtazi-Borojeni, Mahmoud Reza Jaafari, Ali Badiee, Maciej Banach, Amirhossein Sahebkar

Published in: BMC Medicine | Issue 1/2019

Login to get access

Abstract

Background

Proprotein convertase subtilisin/kexin 9 (PCSK9) is an important regulator of low-density lipoprotein receptor (LDLR) and plasma levels of LDL cholesterol (LDL-C). PCSK9 inhibition is an efficient therapeutic approach for the treatment of dyslipidemia. We tested the therapeutic effect of a PCSK9 vaccine on dyslipidemia and atherosclerosis.

Methods

Lipid film hydration method was used to prepare negatively charged nanoliposomes as a vaccine delivery system. An immunogenic peptide called immunogenic fused PCSK9-tetanus (IFPT) was incorporated on the surface of nanoliposomes using DSPE-PEG-maleimide lipid (L-IFPT) and adsorbed to Alhydrogel® (L-IFPTA+). The prepared vaccine formulation (L-IFPTA+) and empty liposomes (negative control) were inoculated four times with bi-weekly intervals in C57BL/6 mice on the background of a severe atherogenic diet and poloxamer 407 (thrice weekly) injection. Antibody titers were evaluated 2 weeks after each vaccination and at the end of the study in vaccinated mice. Effects of anti-PCSK9 vaccination on plasma concentrations of PCSK9 and its interaction with LDLR were determined using ELISA. To evaluate the inflammatory response, interferon-gamma (IFN-γ)- and interleukin (IL)-10-producing splenic cells were assayed using ELISpot analysis.

Results

L-IFPTA+ vaccine induced a high IgG antibody response against PCSK9 peptide in the vaccinated hypercholesterolemic mice. L-IFPTA+-induced antibodies specifically targeted PCSK9 and decreased its plasma consecration by up to 58.5% (− 164.7 ± 9.6 ng/mL, p = 0.0001) compared with the control. PCSK9-LDLR binding assay showed that generated antibodies could inhibit PCSK9-LDLR interaction. The L-IFPTA+ vaccine reduced total cholesterol, LDL-C, and VLDL-C by up to 44.7%, 51.7%, and 19.2%, respectively, after the fourth vaccination booster, compared with the control group at week 8. Long-term studies of vaccinated hypercholesterolemic mice revealed that the L-IFPTA+ vaccine was able to induce a long-lasting humoral immune response against PCSK9 peptide, which was paralleled by a significant decrease of LDL-C by up to 42% over 16 weeks post-prime immunization compared to control. Splenocytes isolated from the vaccinated group showed increased IL-10-producing cells and decreased IFN-γ-producing cells when compared with control and naive mice, suggesting the immune safety of the vaccine.

Conclusions

L-IFPTA+ vaccine could generate long-lasting, functional, and safe PCSK9-specific antibodies in C57BL/6 mice with severe atherosclerosis, which was accompanied by long-term therapeutic effect against hypercholesterolemia and atherosclerosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72.PubMedPubMedCentralCrossRef Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72.PubMedPubMedCentralCrossRef
2.
go back to reference Bachmann MF, Whitehead P. Active immunotherapy for chronic diseases. Vaccine. 2013;31(14):1777–84.PubMedCrossRef Bachmann MF, Whitehead P. Active immunotherapy for chronic diseases. Vaccine. 2013;31(14):1777–84.PubMedCrossRef
3.
go back to reference Sabatine M, Giugliano R, Keech A, Honarpour N, Wiviott S, Murphy S, FOURIER Steering Committee and Investigators, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22 10.PubMedCrossRef Sabatine M, Giugliano R, Keech A, Honarpour N, Wiviott S, Murphy S, FOURIER Steering Committee and Investigators, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22 10.PubMedCrossRef
4.
go back to reference Waters DD, Brotons C, Chiang C-W, Ferrières J, Foody J, Jukema JW, et al. Lipid treatment assessment project 2: a multinational survey to evaluate the proportion of patients achieving low-density lipoprotein cholesterol goals. Circulation. 2009;120(1):28–34.PubMedCrossRef Waters DD, Brotons C, Chiang C-W, Ferrières J, Foody J, Jukema JW, et al. Lipid treatment assessment project 2: a multinational survey to evaluate the proportion of patients achieving low-density lipoprotein cholesterol goals. Circulation. 2009;120(1):28–34.PubMedCrossRef
5.
go back to reference Chong PH, Bachenheimer BS. Current, new and future treatments in dyslipidaemia and atherosclerosis. Drugs. 2000;60(1):55–93.PubMedCrossRef Chong PH, Bachenheimer BS. Current, new and future treatments in dyslipidaemia and atherosclerosis. Drugs. 2000;60(1):55–93.PubMedCrossRef
6.
go back to reference Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154.PubMedCrossRef Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154.PubMedCrossRef
7.
go back to reference Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–53.PubMedCrossRef Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–53.PubMedCrossRef
8.
go back to reference Urban D, Pöss J, Böhm M, Laufs U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013;62(16):1401–8.PubMedCrossRef Urban D, Pöss J, Böhm M, Laufs U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013;62(16):1401–8.PubMedCrossRef
9.
go back to reference Glerup S, Schulz R, Laufs U, Schlüter K-D. Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol. 2017;112(3):32.PubMedPubMedCentralCrossRef Glerup S, Schulz R, Laufs U, Schlüter K-D. Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol. 2017;112(3):32.PubMedPubMedCentralCrossRef
10.
go back to reference Ridker PM, Revkin J, Amarenco P, Brunell R, Curto M, Civeira F, et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med. 2017;376(16):1527–39.PubMedCrossRef Ridker PM, Revkin J, Amarenco P, Brunell R, Curto M, Civeira F, et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med. 2017;376(16):1527–39.PubMedCrossRef
11.
go back to reference Sahebkar A, Watts GF. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther. 2013;27(6):559–67.PubMedCrossRef Sahebkar A, Watts GF. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther. 2013;27(6):559–67.PubMedCrossRef
12.
go back to reference Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, Mewada A, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol. 2012;60(25):2631–9.PubMedCrossRef Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, Mewada A, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol. 2012;60(25):2631–9.PubMedCrossRef
13.
go back to reference Packard CJ, Weintraub WS, Laufs U. New metrics needed to visualize the long-term impact of early LDL-C lowering on the cardiovascular disease trajectory. Vasc Pharmacol. 2015;71:37–9.CrossRef Packard CJ, Weintraub WS, Laufs U. New metrics needed to visualize the long-term impact of early LDL-C lowering on the cardiovascular disease trajectory. Vasc Pharmacol. 2015;71:37–9.CrossRef
14.
go back to reference Fattori E, Cappelletti M, Surdo PL, Calzetta A, Bendtsen C, Ni YG, et al. Immunization against proprotein convertase subtilisin-like/kexin type 9 (PCSK9) lowers plasma LDL-cholesterol levels in mice. J Lipid Res. 2012;jlr:M028340. Fattori E, Cappelletti M, Surdo PL, Calzetta A, Bendtsen C, Ni YG, et al. Immunization against proprotein convertase subtilisin-like/kexin type 9 (PCSK9) lowers plasma LDL-cholesterol levels in mice. J Lipid Res. 2012;jlr:M028340.
15.
go back to reference Crossey E, Amar MJ, Sampson M, Peabody J, Schiller JT, Chackerian B, et al. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine. 2015;33(43):5747–55.PubMedPubMedCentralCrossRef Crossey E, Amar MJ, Sampson M, Peabody J, Schiller JT, Chackerian B, et al. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine. 2015;33(43):5747–55.PubMedPubMedCentralCrossRef
17.
go back to reference Landlinger C, Pouwer MG, Juno C, van der Hoorn JW, Pieterman EJ, Jukema JW, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE* 3Leiden. CETP mice. Eur Heart J. 2017;38(32):2499–507.PubMedPubMedCentralCrossRef Landlinger C, Pouwer MG, Juno C, van der Hoorn JW, Pieterman EJ, Jukema JW, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE* 3Leiden. CETP mice. Eur Heart J. 2017;38(32):2499–507.PubMedPubMedCentralCrossRef
18.
go back to reference Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairhofer A, et al. Peptide-based anti-PCSK9 vaccines-an approach for long-term LDLc management. PLoS One. 2014;9(12):e114469.PubMedPubMedCentralCrossRef Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairhofer A, et al. Peptide-based anti-PCSK9 vaccines-an approach for long-term LDLc management. PLoS One. 2014;9(12):e114469.PubMedPubMedCentralCrossRef
19.
go back to reference Bachmann MF, Dyer MR. Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nat Rev Drug Discov. 2004;3(1):81.PubMedCrossRef Bachmann MF, Dyer MR. Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nat Rev Drug Discov. 2004;3(1):81.PubMedCrossRef
20.
go back to reference Nakagami H, Koriyama H, Morishita R. Therapeutic vaccines for hypertension and dyslipidemia. Int Heart J. 2014;55(2):96–100.PubMedCrossRef Nakagami H, Koriyama H, Morishita R. Therapeutic vaccines for hypertension and dyslipidemia. Int Heart J. 2014;55(2):96–100.PubMedCrossRef
21.
go back to reference Zamani P, Momtazi-Borojeni AA, Nik ME, Oskuee RK, Sahebkar A. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy. J Cell Physiol. 2018;233(7):5189–99.PubMedCrossRef Zamani P, Momtazi-Borojeni AA, Nik ME, Oskuee RK, Sahebkar A. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy. J Cell Physiol. 2018;233(7):5189–99.PubMedCrossRef
22.
go back to reference Momtazi-Borojeni AA, Jaafari MR, Badiee A, Sahebkar A. Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system. Atherosclerosis. 2019;283:69–78.PubMedCrossRef Momtazi-Borojeni AA, Jaafari MR, Badiee A, Sahebkar A. Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system. Atherosclerosis. 2019;283:69–78.PubMedCrossRef
23.
go back to reference Schneeberger A, Mandler M, Otava O, Zauner W, Mattner F, Schmidt W. Development of AFFITOPE vaccines for Alzheimer’s disease (AD)—from concept to clinical testing. J Nutr Health Aging. 2009;13(3):264–7.PubMedCrossRef Schneeberger A, Mandler M, Otava O, Zauner W, Mattner F, Schmidt W. Development of AFFITOPE vaccines for Alzheimer’s disease (AD)—from concept to clinical testing. J Nutr Health Aging. 2009;13(3):264–7.PubMedCrossRef
24.
go back to reference Slingluff CL, Yamshchikov G, Neese P, Galavotti H, Eastham S, Engelhard VH, et al. Phase I trial of a melanoma vaccine with gp100280–288 peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin Cancer Res. 2001;7(10):3012–24.PubMed Slingluff CL, Yamshchikov G, Neese P, Galavotti H, Eastham S, Engelhard VH, et al. Phase I trial of a melanoma vaccine with gp100280–288 peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin Cancer Res. 2001;7(10):3012–24.PubMed
25.
go back to reference Close B, Banister K, Baumans V, Bernoth E-M, Bromage N, Bunyan J, et al. Recommendations for euthanasia of experimental animals: part 2. Lab Anim. 1997;31(1):1–32.PubMedCrossRef Close B, Banister K, Baumans V, Bernoth E-M, Bromage N, Bunyan J, et al. Recommendations for euthanasia of experimental animals: part 2. Lab Anim. 1997;31(1):1–32.PubMedCrossRef
26.
go back to reference Close B, Banister K, Baumans V, Bernoth E-M, Bromage N, Bunyan J, et al. Recommendations for euthanasia of experimental animals: part 1. Lab Anim. 1996;30(4):293–316.PubMedCrossRef Close B, Banister K, Baumans V, Bernoth E-M, Bromage N, Bunyan J, et al. Recommendations for euthanasia of experimental animals: part 1. Lab Anim. 1996;30(4):293–316.PubMedCrossRef
27.
go back to reference Johnston TP, Korolenko TA, Sahebkar A. P-407-induced mouse model of dose-controlled hyperlipidemia and atherosclerosis: 25 years later. J Cardiovasc Pharmacol. 2017;70(5):339–52.PubMedCrossRef Johnston TP, Korolenko TA, Sahebkar A. P-407-induced mouse model of dose-controlled hyperlipidemia and atherosclerosis: 25 years later. J Cardiovasc Pharmacol. 2017;70(5):339–52.PubMedCrossRef
28.
go back to reference Johnston TP. The P-407–induced murine model of dose-controlled hyperlipidemia and atherosclerosis: a review of findings to date. J Cardiovasc Pharmacol. 2004;43(4):595–606.PubMedCrossRef Johnston TP. The P-407–induced murine model of dose-controlled hyperlipidemia and atherosclerosis: a review of findings to date. J Cardiovasc Pharmacol. 2004;43(4):595–606.PubMedCrossRef
29.
go back to reference Leon C, Wasan KM, Sachs-Barrable K, Johnston TP. Acute P-407 administration to mice causes hypercholesterolemia by inducing cholesterolgenesis and down-regulating low-density lipoprotein receptor expression. Pharm Res. 2006;23(7):1597–607.PubMedCrossRef Leon C, Wasan KM, Sachs-Barrable K, Johnston TP. Acute P-407 administration to mice causes hypercholesterolemia by inducing cholesterolgenesis and down-regulating low-density lipoprotein receptor expression. Pharm Res. 2006;23(7):1597–607.PubMedCrossRef
30.
go back to reference Zhang L, Zhang Z, Li Y, Liao S, Wu X, Chang Q, et al. Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease. Sci Rep. 2015;5:15970.PubMedPubMedCentralCrossRef Zhang L, Zhang Z, Li Y, Liao S, Wu X, Chang Q, et al. Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease. Sci Rep. 2015;5:15970.PubMedPubMedCentralCrossRef
31.
go back to reference Palmer WK, Emeson EE, Johnston TP. Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis. 1998;136(1):115–23.PubMedCrossRef Palmer WK, Emeson EE, Johnston TP. Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis. 1998;136(1):115–23.PubMedCrossRef
32.
go back to reference Chekanov VS, Mortada ME, Tchekanov GV, Maternowski MA, Eisenstein R, Pello N, et al. Pathologic and histologic results of electrical impulses in a rabbit model of atherosclerosis: 24-hour versus 8-hour regimen. J Vasc Surg. 2002;35(3):554–62.PubMedCrossRef Chekanov VS, Mortada ME, Tchekanov GV, Maternowski MA, Eisenstein R, Pello N, et al. Pathologic and histologic results of electrical impulses in a rabbit model of atherosclerosis: 24-hour versus 8-hour regimen. J Vasc Surg. 2002;35(3):554–62.PubMedCrossRef
35.
go back to reference Bartelds GM, Krieckaert CL, Nurmohamed MT, van Schouwenburg PA, Lems WF, Twisk JW, et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. Jama. 2011;305(14):1460–8.PubMedCrossRef Bartelds GM, Krieckaert CL, Nurmohamed MT, van Schouwenburg PA, Lems WF, Twisk JW, et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. Jama. 2011;305(14):1460–8.PubMedCrossRef
36.
go back to reference Chackerian B, Remaley A. Vaccine strategies for lowering LDL by immunization against proprotein convertase subtilisin/kexin type 9. Curr Opin Lipidol. 2016;27(4):345–50.PubMedCrossRef Chackerian B, Remaley A. Vaccine strategies for lowering LDL by immunization against proprotein convertase subtilisin/kexin type 9. Curr Opin Lipidol. 2016;27(4):345–50.PubMedCrossRef
38.
go back to reference Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86(2):515–81.PubMedCrossRef Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86(2):515–81.PubMedCrossRef
40.
go back to reference Wurtz O, Bajénoff M, Guerder S. IL-4-mediated inhibition of IFN-γ production by CD4+ T cells proceeds by several developmentally regulated mechanisms. Int Immunol. 2004;16(3):501–8.PubMedCrossRef Wurtz O, Bajénoff M, Guerder S. IL-4-mediated inhibition of IFN-γ production by CD4+ T cells proceeds by several developmentally regulated mechanisms. Int Immunol. 2004;16(3):501–8.PubMedCrossRef
41.
go back to reference Kawaguchi K, Sakurai M, Yamamoto Y, Suzuki E, Tsuda M, Kataoka TR, et al. Alteration of specific cytokine expression patterns in patients with breast cancer. Sci Rep. 2019;9(1):2924.PubMedPubMedCentralCrossRef Kawaguchi K, Sakurai M, Yamamoto Y, Suzuki E, Tsuda M, Kataoka TR, et al. Alteration of specific cytokine expression patterns in patients with breast cancer. Sci Rep. 2019;9(1):2924.PubMedPubMedCentralCrossRef
Metadata
Title
RETRACTED ARTICLE: Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis
Authors
Amir Abbas Momtazi-Borojeni
Mahmoud Reza Jaafari
Ali Badiee
Maciej Banach
Amirhossein Sahebkar
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2019
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-019-1457-8

Other articles of this Issue 1/2019

BMC Medicine 1/2019 Go to the issue