Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2020

01-12-2020 | Colon Cancer | Research article

Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data

Authors: Danyang Tong, Yu Tian, Tianshu Zhou, Qiancheng Ye, Jun Li, Kefeng Ding, Jingsong Li

Published in: BMC Medical Informatics and Decision Making | Issue 1/2020

Login to get access

Abstract

Background

Colon cancer is common worldwide and is the leading cause of cancer-related death. Multiple levels of omics data are available due to the development of sequencing technologies. In this study, we proposed an integrative prognostic model for colon cancer based on the integration of clinical and multi-omics data.

Methods

In total, 344 patients were included in this study. Clinical, gene expression, DNA methylation and miRNA expression data were retrieved from The Cancer Genome Atlas (TCGA). To accommodate the high dimensionality of omics data, unsupervised clustering was used as dimension reduction method. The bias-corrected Harrell’s concordance index was used to verify which clustering result provided the best prognostic performance. Finally, we proposed a prognostic prediction model based on the integration of clinical data and multi-omics data. Uno’s concordance index with cross-validation was used to compare the discriminative performance of the prognostic model constructed with different covariates.

Results

Combinations of clinical and multi-omics data can improve prognostic performance, as shown by the increase of the bias-corrected Harrell’s concordance of the prognostic model from 0.7424 (clinical features only) to 0.7604 (clinical features and three types of omics features). Additionally, 2-year, 3-year and 5-year Uno’s concordance statistics increased from 0.7329, 0.7043, and 0.7002 (clinical features only) to 0.7639, 0.7474 and 0.7597 (clinical features and three types of omics features), respectively.

Conclusion

In conclusion, this study successfully combined clinical and multi-omics data for better prediction of colon cancer prognosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67(3):177–93.PubMedCrossRef Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67(3):177–93.PubMedCrossRef
2.
go back to reference Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75.PubMedPubMedCentralCrossRef Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75.PubMedPubMedCentralCrossRef
3.
go back to reference Wuchty S, Zhang A, Walling J, Ahn S, Li AG, Quezado M, et al. Gene pathways and subnetworks distinguish between major glioma subtypes and elucidate potential underlying biology. J Biomed Inform. 2010;43(6):945–52.PubMedCrossRefPubMedCentral Wuchty S, Zhang A, Walling J, Ahn S, Li AG, Quezado M, et al. Gene pathways and subnetworks distinguish between major glioma subtypes and elucidate potential underlying biology. J Biomed Inform. 2010;43(6):945–52.PubMedCrossRefPubMedCentral
4.
go back to reference Chen YC, Chang YC, Ke WC, Chiu HW. Cancer adjuvant chemotherapy strategic classification by artificial neural network with gene expression data: an example for non-small cell lung cancer. J Biomed Inform. 2015;56:1–7.PubMedCrossRef Chen YC, Chang YC, Ke WC, Chiu HW. Cancer adjuvant chemotherapy strategic classification by artificial neural network with gene expression data: an example for non-small cell lung cancer. J Biomed Inform. 2015;56:1–7.PubMedCrossRef
5.
go back to reference Ruffalo M, Husseinzadeh H, Makishima H, Przychodzen B, Ashkar M, Koyuturk M, et al. Whole-exome sequencing enhances prognostic classification of myeloid malignancies. J Biomed Inform. 2015;58:104–13.PubMedCrossRef Ruffalo M, Husseinzadeh H, Makishima H, Przychodzen B, Ashkar M, Koyuturk M, et al. Whole-exome sequencing enhances prognostic classification of myeloid malignancies. J Biomed Inform. 2015;58:104–13.PubMedCrossRef
6.
go back to reference Jin H, Lee HC, Park SS, Jeong YS, Kim SY. Serum cancer biomarker discovery through analysis of gene expression data sets across multiple tumor and normal tissues. J Biomed Inform. 2011;44(6):1076–85.PubMedCrossRef Jin H, Lee HC, Park SS, Jeong YS, Kim SY. Serum cancer biomarker discovery through analysis of gene expression data sets across multiple tumor and normal tissues. J Biomed Inform. 2011;44(6):1076–85.PubMedCrossRef
7.
go back to reference Zhao LP, Bolouri H. Object-oriented regression for building predictive models with high dimensional omics data from translational studies. J Biomed Inform. 2016;60:431–45.PubMedPubMedCentralCrossRef Zhao LP, Bolouri H. Object-oriented regression for building predictive models with high dimensional omics data from translational studies. J Biomed Inform. 2016;60:431–45.PubMedPubMedCentralCrossRef
8.
go back to reference Joe S, Nam H. Prognostic factor analysis for breast cancer using gene expression profiles. BMC Med Inform Decis Mak. 2016;16:9.CrossRef Joe S, Nam H. Prognostic factor analysis for breast cancer using gene expression profiles. BMC Med Inform Decis Mak. 2016;16:9.CrossRef
9.
go back to reference Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.PubMedPubMedCentralCrossRef Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.PubMedPubMedCentralCrossRef
11.
go back to reference Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC Cancer staging manual: breast Cancer. Ann Surg Oncol. 2018;25(7):1783–5.PubMedCrossRef Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC Cancer staging manual: breast Cancer. Ann Surg Oncol. 2018;25(7):1783–5.PubMedCrossRef
12.
go back to reference Benson AB, Venook AP, Cederquist L, Chan E, Chen Y-J, Cooper HS, et al. Colon Cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(3):370–98.CrossRef Benson AB, Venook AP, Cederquist L, Chan E, Chen Y-J, Cooper HS, et al. Colon Cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(3):370–98.CrossRef
13.
go back to reference Network TCGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.CrossRef Network TCGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.CrossRef
14.
go back to reference Kim D, Li RW, Dudek SM, Ritchie MD. ATHENA: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Min. 2013;6(1):285–93.CrossRef Kim D, Li RW, Dudek SM, Ritchie MD. ATHENA: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Min. 2013;6(1):285–93.CrossRef
15.
go back to reference Kim D, Shin H, Sohn KA, Verma A, Ritchie MD, Kim JH. Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction. Methods. 2014;67(3):344–53.PubMedPubMedCentralCrossRef Kim D, Shin H, Sohn KA, Verma A, Ritchie MD, Kim JH. Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction. Methods. 2014;67(3):344–53.PubMedPubMedCentralCrossRef
16.
go back to reference Kim D, Li R, Dudek SM, Ritchie MD. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer. J Biomed Inform. 2015;56:220–8.PubMedPubMedCentralCrossRef Kim D, Li R, Dudek SM, Ritchie MD. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer. J Biomed Inform. 2015;56:220–8.PubMedPubMedCentralCrossRef
17.
go back to reference Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 Cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929–44.PubMedPubMedCentralCrossRef Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 Cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929–44.PubMedPubMedCentralCrossRef
18.
go back to reference Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell. 2018;173(2):291–304 e6.PubMedPubMedCentralCrossRef Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell. 2018;173(2):291–304 e6.PubMedPubMedCentralCrossRef
19.
go back to reference Phan JH, Quo CF, Cheng C, Wang MD. Multiscale integration of -omic, imaging, and clinical data in biomedical informatics. IEEE Rev Biomed Eng. 2012;5:74–87.PubMedPubMedCentralCrossRef Phan JH, Quo CF, Cheng C, Wang MD. Multiscale integration of -omic, imaging, and clinical data in biomedical informatics. IEEE Rev Biomed Eng. 2012;5:74–87.PubMedPubMedCentralCrossRef
20.
go back to reference Huang SJ, Yee C, Ching T, Yu H, Garmire LX. A novel model to combine clinical and pathway-based Transcriptomic information for the prognosis prediction of breast Cancer. PLoS Comput Biol. 2014;10(9):e1003851.PubMedPubMedCentralCrossRef Huang SJ, Yee C, Ching T, Yu H, Garmire LX. A novel model to combine clinical and pathway-based Transcriptomic information for the prognosis prediction of breast Cancer. PLoS Comput Biol. 2014;10(9):e1003851.PubMedPubMedCentralCrossRef
21.
go back to reference Malhotra K, Navathe SB, Chau DH, Hadjipanayis C, Sun JM. Constraint based temporal event sequence mining for Glioblastoma survival prediction. J Biomed Inform. 2016;61:267–75.PubMedCrossRef Malhotra K, Navathe SB, Chau DH, Hadjipanayis C, Sun JM. Constraint based temporal event sequence mining for Glioblastoma survival prediction. J Biomed Inform. 2016;61:267–75.PubMedCrossRef
22.
go back to reference Exarchos KP, Goletsis Y, Fotiadis DI. A multiscale and multiparametric approach for modeling the progression of oral cancer. BMC Med Inform Decis Mak. 2012;12(1):136.PubMedPubMedCentralCrossRef Exarchos KP, Goletsis Y, Fotiadis DI. A multiscale and multiparametric approach for modeling the progression of oral cancer. BMC Med Inform Decis Mak. 2012;12(1):136.PubMedPubMedCentralCrossRef
23.
go back to reference Singer F, Irmisch A, Toussaint NC, Grob L, Singer J, Thurnherr T, et al. SwissMTB: establishing comprehensive molecular cancer diagnostics in Swiss clinics. BMC Med Inform Decis Mak. 2018;18(1):89.PubMedPubMedCentralCrossRef Singer F, Irmisch A, Toussaint NC, Grob L, Singer J, Thurnherr T, et al. SwissMTB: establishing comprehensive molecular cancer diagnostics in Swiss clinics. BMC Med Inform Decis Mak. 2018;18(1):89.PubMedPubMedCentralCrossRef
24.
go back to reference Chi SQ, Tian Y, Li J, Tong DY, Kong XX, Poston G, et al. Time-dependent and nonlinear effects of prognostic factors in nonmetastatic colorectal cancer. Cancer Medicine. 2017;6(8):1882–92.PubMedPubMedCentralCrossRef Chi SQ, Tian Y, Li J, Tong DY, Kong XX, Poston G, et al. Time-dependent and nonlinear effects of prognostic factors in nonmetastatic colorectal cancer. Cancer Medicine. 2017;6(8):1882–92.PubMedPubMedCentralCrossRef
25.
go back to reference Okugawa Y, Grady WM, Goel A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology. 2015;149(5):1204–25 e12.PubMedCrossRef Okugawa Y, Grady WM, Goel A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology. 2015;149(5):1204–25 e12.PubMedCrossRef
28.
go back to reference Wei L, Jin ZL, Yang SJ, Xu YX, Zhu YT, Ji Y. TCGA-assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data. Bioinformatics. 2018;34(9):1615–7.PubMedCrossRef Wei L, Jin ZL, Yang SJ, Xu YX, Zhu YT, Ji Y. TCGA-assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data. Bioinformatics. 2018;34(9):1615–7.PubMedCrossRef
29.
go back to reference Network TCGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef Network TCGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef
31.
go back to reference Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA-J Am Med Assoc. 1982;247(18):2543–6.CrossRef Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA-J Am Med Assoc. 1982;247(18):2543–6.CrossRef
32.
go back to reference Uno H, Cai T, Pencina MJ, D'Agostino RB, Wei LJ. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30(10):1105–17.PubMedPubMedCentral Uno H, Cai T, Pencina MJ, D'Agostino RB, Wei LJ. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30(10):1105–17.PubMedPubMedCentral
33.
go back to reference Riester M, Taylor JM, Feifer A, Koppie T, Rosenberg JE, Downey RJ, et al. Combination of a novel gene expression signature with a clinical Nomogram improves the prediction of survival in high-risk bladder Cancer. Clin Cancer Res. 2012;18(5):1323–33.PubMedPubMedCentralCrossRef Riester M, Taylor JM, Feifer A, Koppie T, Rosenberg JE, Downey RJ, et al. Combination of a novel gene expression signature with a clinical Nomogram improves the prediction of survival in high-risk bladder Cancer. Clin Cancer Res. 2012;18(5):1323–33.PubMedPubMedCentralCrossRef
34.
go back to reference Grambsch PM, Therneau TM. Proportional hazards tests and diagnosis based on weighted residuals. Biometrika. 1994;81(3):515–26.CrossRef Grambsch PM, Therneau TM. Proportional hazards tests and diagnosis based on weighted residuals. Biometrika. 1994;81(3):515–26.CrossRef
35.
go back to reference Devarajan K, Ebrahimi N. Testing for covariate effect in the cox proportional hazards regression model. Commun Stat-Theory Methods. 2009;38(14):2333–47.PubMedPubMedCentralCrossRef Devarajan K, Ebrahimi N. Testing for covariate effect in the cox proportional hazards regression model. Commun Stat-Theory Methods. 2009;38(14):2333–47.PubMedPubMedCentralCrossRef
36.
37.
go back to reference Rudloff U, Jacks LM, Goldberg JI, Wynveen CA, Brogi E, Patil S, et al. Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J Clin Oncol. 2010;28(23):3762–9.PubMedCrossRef Rudloff U, Jacks LM, Goldberg JI, Wynveen CA, Brogi E, Patil S, et al. Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J Clin Oncol. 2010;28(23):3762–9.PubMedCrossRef
38.
go back to reference Albert JM, Liu DD, Shen Y, Pan IW, Shih Y-CT, Hoffman KE, et al. Nomogram to predict the benefit of radiation for older patients with breast Cancer treated with conservative surgery. J Clin Oncol. 2012;30(23):2837–43.PubMedPubMedCentralCrossRef Albert JM, Liu DD, Shen Y, Pan IW, Shih Y-CT, Hoffman KE, et al. Nomogram to predict the benefit of radiation for older patients with breast Cancer treated with conservative surgery. J Clin Oncol. 2012;30(23):2837–43.PubMedPubMedCentralCrossRef
39.
go back to reference Rose PG, Java J, Whitney CW, Stehman FB, Lanciano R, Thomas GM, et al. Nomograms predicting progression-free survival, overall survival, and pelvic recurrence in locally advanced cervical Cancer developed from an analysis of identifiable prognostic factors in patients from NRG oncology/gynecologic oncology group randomized trials of Chemoradiotherapy. J Clin Oncol. 2015;33(19):2136–42.PubMedPubMedCentralCrossRef Rose PG, Java J, Whitney CW, Stehman FB, Lanciano R, Thomas GM, et al. Nomograms predicting progression-free survival, overall survival, and pelvic recurrence in locally advanced cervical Cancer developed from an analysis of identifiable prognostic factors in patients from NRG oncology/gynecologic oncology group randomized trials of Chemoradiotherapy. J Clin Oncol. 2015;33(19):2136–42.PubMedPubMedCentralCrossRef
40.
go back to reference Zhao Q, Shi X, Xie Y, Huang J, Shia B, Ma S. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Brief Bioinform. 2015;16(2):291–303.PubMedCrossRef Zhao Q, Shi X, Xie Y, Huang J, Shia B, Ma S. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Brief Bioinform. 2015;16(2):291–303.PubMedCrossRef
41.
go back to reference Lukkonen A, Sorsa T, Salo T, Tervahartiala T, Koivunen E, Golub L, et al. Down-regulation of trypsinogen-2 expression by chemically modified tetracyclines: association with reduced cancer cell migration. Int J Cancer. 2000;86(4):577–81.PubMedCrossRef Lukkonen A, Sorsa T, Salo T, Tervahartiala T, Koivunen E, Golub L, et al. Down-regulation of trypsinogen-2 expression by chemically modified tetracyclines: association with reduced cancer cell migration. Int J Cancer. 2000;86(4):577–81.PubMedCrossRef
42.
go back to reference Xu D, Yuan L, Liu X, Li MQ, Zhang FB, Gu XY, et al. EphB6 overexpression and Apc mutation together promote colorectal cancer. Oncotarget. 2016;7(21):31111–21.PubMedPubMedCentral Xu D, Yuan L, Liu X, Li MQ, Zhang FB, Gu XY, et al. EphB6 overexpression and Apc mutation together promote colorectal cancer. Oncotarget. 2016;7(21):31111–21.PubMedPubMedCentral
43.
go back to reference Zhang YQ, Zhao XT, Deng LL, Li XT, Wang GB, Li YX, et al. High expression of FABP4 and FABP6 in patients with colorectal cancer. World J Surg Oncol. 2019;17(1):13.CrossRef Zhang YQ, Zhao XT, Deng LL, Li XT, Wang GB, Li YX, et al. High expression of FABP4 and FABP6 in patients with colorectal cancer. World J Surg Oncol. 2019;17(1):13.CrossRef
44.
go back to reference Lodola A, Giorgio C, Incerti M, Zanotti I, Tognolini M. Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem. 2017;142:152–62.PubMedCrossRef Lodola A, Giorgio C, Incerti M, Zanotti I, Tognolini M. Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem. 2017;142:152–62.PubMedCrossRef
45.
go back to reference DiPrima M, Wang D, Tröster A, Maric D, Terrades-Garcia N, Ha T, et al. Identification of Eph receptor signaling as a regulator of autophagy and a therapeutic target in colorectal carcinoma. Mol Oncol. 2019;13(11):2441-59.PubMedPubMedCentralCrossRef DiPrima M, Wang D, Tröster A, Maric D, Terrades-Garcia N, Ha T, et al. Identification of Eph receptor signaling as a regulator of autophagy and a therapeutic target in colorectal carcinoma. Mol Oncol. 2019;13(11):2441-59.PubMedPubMedCentralCrossRef
46.
go back to reference Liang MX, Li ZZ, Chen T, Zeng JY. Integrative data analysis of multi-platform Cancer data with a multimodal deep learning approach. IEEE-ACM Trans Comput Biol Bioinform. 2015;12(4):928–37.CrossRef Liang MX, Li ZZ, Chen T, Zeng JY. Integrative data analysis of multi-platform Cancer data with a multimodal deep learning approach. IEEE-ACM Trans Comput Biol Bioinform. 2015;12(4):928–37.CrossRef
47.
go back to reference Chaudharyl K, Poirionl OB, Lu LQ, Garmire LX. Deep learning-based multi-Omics integration robustly predicts survival in liver Cancer. Clin Cancer Res. 2018;24(6):1248–59.CrossRef Chaudharyl K, Poirionl OB, Lu LQ, Garmire LX. Deep learning-based multi-Omics integration robustly predicts survival in liver Cancer. Clin Cancer Res. 2018;24(6):1248–59.CrossRef
48.
go back to reference Poirion OB, Chaudhary K, Garmire LX. Deep learning data integration for better risk stratification models of bladder cancer. AMIA Joint Summits on Translational Science proceedings AMIA Joint Summits on Translational Science. 2017;2018:197–206. Poirion OB, Chaudhary K, Garmire LX. Deep learning data integration for better risk stratification models of bladder cancer. AMIA Joint Summits on Translational Science proceedings AMIA Joint Summits on Translational Science. 2017;2018:197–206.
49.
go back to reference Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Meth. 2014;11(3):333–7.CrossRef Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Meth. 2014;11(3):333–7.CrossRef
50.
go back to reference Zizzo AN, Erdman L, Feldman BM, Goldenberg A. Similarity Network fusion a novel application to making clinical diagnoses. Rheum Dis Clin N Am. 2018;44(2):285–93.CrossRef Zizzo AN, Erdman L, Feldman BM, Goldenberg A. Similarity Network fusion a novel application to making clinical diagnoses. Rheum Dis Clin N Am. 2018;44(2):285–93.CrossRef
Metadata
Title
Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data
Authors
Danyang Tong
Yu Tian
Tianshu Zhou
Qiancheng Ye
Jun Li
Kefeng Ding
Jingsong Li
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2020
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-020-1043-1

Other articles of this Issue 1/2020

BMC Medical Informatics and Decision Making 1/2020 Go to the issue