Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2019

Open Access 01-12-2019 | Alzheimer's Disease | Research article

Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data

Authors: Min Ju Kang, Sang Yun Kim, Duk L. Na, Byeong C. Kim, Dong Won Yang, Eun-Joo Kim, Hae Ri Na, Hyun Jeong Han, Jae-Hong Lee, Jong Hun Kim, Kee Hyung Park, Kyung Won Park, Seol-Heui Han, Seong Yoon Kim, Soo Jin Yoon, Bora Yoon, Sang Won Seo, So Young Moon, YoungSoon Yang, Yong S. Shim, Min Jae Baek, Jee Hyang Jeong, Seong Hye Choi, Young Chul Youn

Published in: BMC Medical Informatics and Decision Making | Issue 1/2019

Login to get access

Abstract

Background

Neuropsychological tests (NPTs) are important tools for informing diagnoses of cognitive impairment (CI). However, interpreting NPTs requires specialists and is thus time-consuming. To streamline the application of NPTs in clinical settings, we developed and evaluated the accuracy of a machine learning algorithm using multi-center NPT data.

Methods

Multi-center data were obtained from 14,926 formal neuropsychological assessments (Seoul Neuropsychological Screening Battery), which were classified into normal cognition (NC), mild cognitive impairment (MCI) and Alzheimer’s disease dementia (ADD). We trained a machine learning model with artificial neural network algorithm using TensorFlow (https://​www.​tensorflow.​org) to distinguish cognitive state with the 46-variable data and measured prediction accuracies from 10 randomly selected datasets. The features of the NPT were listed in order of their contribution to the outcome using Recursive Feature Elimination.

Results

The ten times mean accuracies of identifying CI (MCI and ADD) achieved by 96.66 ± 0.52% of the balanced dataset and 97.23 ± 0.32% of the clinic-based dataset, and the accuracies for predicting cognitive states (NC, MCI or ADD) were 95.49 ± 0.53 and 96.34 ± 1.03%. The sensitivity to the detection CI and MCI in the balanced dataset were 96.0 and 96.0%, and the specificity were 96.8 and 97.4%, respectively. The ‘time orientation’ and ‘3-word recall’ score of MMSE were highly ranked features in predicting CI and cognitive state. The twelve features reduced from 46 variable of NPTs with age and education had contributed to more than 90% accuracy in predicting cognitive impairment.

Conclusions

The machine learning algorithm for NPTs has suggested potential use as a reference in differentiating cognitive impairment in the clinical setting.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cheng YW, Chen TF, Chiu MJ. From mild cognitive impairment to subjective cognitive decline: conceptual and methodological evolution. Neuropsychiatr Dis Treat. 2017;13:491–8.CrossRef Cheng YW, Chen TF, Chiu MJ. From mild cognitive impairment to subjective cognitive decline: conceptual and methodological evolution. Neuropsychiatr Dis Treat. 2017;13:491–8.CrossRef
2.
go back to reference Peters F, Villeneuve S, Belleville S. Predicting progression to dementia in elderly subjects with mild cognitive impairment using both cognitive and neuroimaging predictors. J Alzheimers Dis. 2014;38(2):307–18.CrossRef Peters F, Villeneuve S, Belleville S. Predicting progression to dementia in elderly subjects with mild cognitive impairment using both cognitive and neuroimaging predictors. J Alzheimers Dis. 2014;38(2):307–18.CrossRef
3.
go back to reference Baerresen KM, Miller KJ, Hanson ER, Miller JS, Dye RV, Hartman RE, Vermeersch D, Small GW. Neuropsychological tests for predicting cognitive decline in older adults. Neurodegener Dis Manag. 2015;5(3):191–201.CrossRef Baerresen KM, Miller KJ, Hanson ER, Miller JS, Dye RV, Hartman RE, Vermeersch D, Small GW. Neuropsychological tests for predicting cognitive decline in older adults. Neurodegener Dis Manag. 2015;5(3):191–201.CrossRef
4.
go back to reference McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–9.CrossRef McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–9.CrossRef
5.
go back to reference McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 1984;34(7):939–44.CrossRef McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 1984;34(7):939–44.CrossRef
6.
go back to reference Beier M, Hughes AJ, Williams MW, Gromisch ES. Brief and cost-effective tool for assessing verbal learning in multiple sclerosis: comparison of the Rey auditory verbal learning test (RAVLT) to the California verbal learning test - II (CVLT-II). J Neurol Sci. 2019;400:104–9.CrossRef Beier M, Hughes AJ, Williams MW, Gromisch ES. Brief and cost-effective tool for assessing verbal learning in multiple sclerosis: comparison of the Rey auditory verbal learning test (RAVLT) to the California verbal learning test - II (CVLT-II). J Neurol Sci. 2019;400:104–9.CrossRef
7.
go back to reference Muller S, Herde L, Preische O, Zeller A, Heymann P, Robens S, Elbing U, Laske C. Diagnostic value of digital clock drawing test in comparison with CERAD neuropsychological battery total score for discrimination of patients in the early course of Alzheimer's disease from healthy individuals. Sci Rep. 2019;9(1):3543.CrossRef Muller S, Herde L, Preische O, Zeller A, Heymann P, Robens S, Elbing U, Laske C. Diagnostic value of digital clock drawing test in comparison with CERAD neuropsychological battery total score for discrimination of patients in the early course of Alzheimer's disease from healthy individuals. Sci Rep. 2019;9(1):3543.CrossRef
8.
9.
go back to reference Battista P, Salvatore C, Castiglioni I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study. Behav Neurol. 2017;2017:1850909.CrossRef Battista P, Salvatore C, Castiglioni I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study. Behav Neurol. 2017;2017:1850909.CrossRef
10.
go back to reference Han SH, Kim KW, Kim S, Youn YC. Artificial neural network: understanding the basic concepts without mathematics. Dement Neurocogn Disord. 2018;17(3):83–9.CrossRef Han SH, Kim KW, Kim S, Youn YC. Artificial neural network: understanding the basic concepts without mathematics. Dement Neurocogn Disord. 2018;17(3):83–9.CrossRef
11.
go back to reference Gurevich P, Stuke H, Kastrup A, Stuke H, Hildebrandt H. Neuropsychological testing and machine learning distinguish Alzheimer's disease from other causes for cognitive impairment. Front Aging Neurosci. 2017;9:114.CrossRef Gurevich P, Stuke H, Kastrup A, Stuke H, Hildebrandt H. Neuropsychological testing and machine learning distinguish Alzheimer's disease from other causes for cognitive impairment. Front Aging Neurosci. 2017;9:114.CrossRef
12.
go back to reference Weakley A, Williams JA, Schmitter-Edgecombe M, Cook DJ. Neuropsychological test selection for cognitive impairment classification: a machine learning approach. J Clin Exp Neuropsychol. 2015;37(9):899–916.CrossRef Weakley A, Williams JA, Schmitter-Edgecombe M, Cook DJ. Neuropsychological test selection for cognitive impairment classification: a machine learning approach. J Clin Exp Neuropsychol. 2015;37(9):899–916.CrossRef
13.
go back to reference Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Alzheimer's disease neuroimaging I: machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412.CrossRef Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Alzheimer's disease neuroimaging I: machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412.CrossRef
14.
go back to reference Youn YC, Choi SH, Shin HW, Kim KW, Jang JW, Jung JJ, Hsiung GR, Kim S. Detection of cognitive impairment using a machine-learning algorithm. Neuropsychiatr Dis Treat. 2018;14:2939–45.CrossRef Youn YC, Choi SH, Shin HW, Kim KW, Jang JW, Jung JJ, Hsiung GR, Kim S. Detection of cognitive impairment using a machine-learning algorithm. Neuropsychiatr Dis Treat. 2018;14:2939–45.CrossRef
15.
go back to reference Choi HJ, Lee DY, Seo EH, Jo MK, Sohn BK, Choe YM, Byun MS, Kim JW, Kim SG, Yoon JC, et al. A normative study of the digit span in an educationally diverse elderly population. Psychiatry Investig. 2014;11(1):39–43.CrossRef Choi HJ, Lee DY, Seo EH, Jo MK, Sohn BK, Choe YM, Byun MS, Kim JW, Kim SG, Yoon JC, et al. A normative study of the digit span in an educationally diverse elderly population. Psychiatry Investig. 2014;11(1):39–43.CrossRef
16.
go back to reference Kim H, Na DL. Normative data on the Korean version of the Boston naming test. J Clin Exp Neuropsychol. 1999;21(1):127–33.CrossRef Kim H, Na DL. Normative data on the Korean version of the Boston naming test. J Clin Exp Neuropsychol. 1999;21(1):127–33.CrossRef
17.
go back to reference Shin MS, Park SY, Park SR, Seol SH, Kwon JS. Clinical and empirical applications of the Rey-Osterrieth complex figure test. Nat Protoc. 2006;1(2):892–9.CrossRef Shin MS, Park SY, Park SR, Seol SH, Kwon JS. Clinical and empirical applications of the Rey-Osterrieth complex figure test. Nat Protoc. 2006;1(2):892–9.CrossRef
18.
go back to reference Baek MJ, Kim HJ, Kim S. Comparison between the story recall test and the word-list learning test in Korean patients with mild cognitive impairment and early stage of Alzheimer's disease. J Clin Exp Neuropsychol. 2012;34(4):396–404.CrossRef Baek MJ, Kim HJ, Kim S. Comparison between the story recall test and the word-list learning test in Korean patients with mild cognitive impairment and early stage of Alzheimer's disease. J Clin Exp Neuropsychol. 2012;34(4):396–404.CrossRef
19.
go back to reference Park HK, Na DL, Han SH, Kim JY, Cheong HK, Kim SY, Kim SY, Hong CH, Kim DK, Ku BD, et al. Clinical characteristics of a nationwide hospital-based registry of mild-to-moderate Alzheimer's disease patients in Korea: a CREDOS (clinical research Center for Dementia of South Korea) study. J Korean Med Sci. 2011;26(9):1219–26.CrossRef Park HK, Na DL, Han SH, Kim JY, Cheong HK, Kim SY, Kim SY, Hong CH, Kim DK, Ku BD, et al. Clinical characteristics of a nationwide hospital-based registry of mild-to-moderate Alzheimer's disease patients in Korea: a CREDOS (clinical research Center for Dementia of South Korea) study. J Korean Med Sci. 2011;26(9):1219–26.CrossRef
20.
go back to reference Ye BS, Seo SW, Lee Y, Kim SY, Choi SH, Lee YM, Kim DH, Han HJ, Na DL, Kim EJ. Neuropsychological performance and conversion to Alzheimer's disease in early- compared to late-onset amnestic mild cognitive impairment: CREDOS study. Dement Geriatr Cogn Disord. 2012;34(3–4):156–66.CrossRef Ye BS, Seo SW, Lee Y, Kim SY, Choi SH, Lee YM, Kim DH, Han HJ, Na DL, Kim EJ. Neuropsychological performance and conversion to Alzheimer's disease in early- compared to late-onset amnestic mild cognitive impairment: CREDOS study. Dement Geriatr Cogn Disord. 2012;34(3–4):156–66.CrossRef
21.
go back to reference Chang KJ, Lee S, Lee Y, Lee KS, Back JH, Jung YK, Lim KY, Noh JS, Kim HC, Roh HW, et al. Severity of white matter Hyperintensities and length of hospital stay in patients with cognitive impairment: a CREDOS (clinical research Center for Dementia of South Korea) study. J Alzheimers Dis. 2015;46(3):719–26.CrossRef Chang KJ, Lee S, Lee Y, Lee KS, Back JH, Jung YK, Lim KY, Noh JS, Kim HC, Roh HW, et al. Severity of white matter Hyperintensities and length of hospital stay in patients with cognitive impairment: a CREDOS (clinical research Center for Dementia of South Korea) study. J Alzheimers Dis. 2015;46(3):719–26.CrossRef
22.
go back to reference Park HK, Choi SH, Park SA, Kim HJ, Lee Y, Han SH, Kim EJ, Kim BC, Han HJ, Moon SY, et al. Cognitive profiles and neuropsychiatric symptoms in Korean early-onset Alzheimer's disease patients: a CREDOS study. J Alzheimers Dis. 2015;44(2):661–73.CrossRef Park HK, Choi SH, Park SA, Kim HJ, Lee Y, Han SH, Kim EJ, Kim BC, Han HJ, Moon SY, et al. Cognitive profiles and neuropsychiatric symptoms in Korean early-onset Alzheimer's disease patients: a CREDOS study. J Alzheimers Dis. 2015;44(2):661–73.CrossRef
23.
go back to reference Roh HW, Hong CH, Lee Y, Lee KS, Chang KJ, Kang DR, Lee JD, Choi SH, Kim SY, Na DL, et al. Clinical conversion or reversion of mild cognitive impairment in community versus hospital based studies: GDEMCIS (Gwangju dementia and mild cognitive impairment study) and CREDOS (clinical research Center for Dementia of South Korea). J Alzheimers Dis. 2016;53(2):463–73.CrossRef Roh HW, Hong CH, Lee Y, Lee KS, Chang KJ, Kang DR, Lee JD, Choi SH, Kim SY, Na DL, et al. Clinical conversion or reversion of mild cognitive impairment in community versus hospital based studies: GDEMCIS (Gwangju dementia and mild cognitive impairment study) and CREDOS (clinical research Center for Dementia of South Korea). J Alzheimers Dis. 2016;53(2):463–73.CrossRef
24.
go back to reference Choi SH, Kim S, Han SH, Na DL, Kim DK, Cheong HK, Lee JH, Kim SY, Hong CH, Moon SY, et al. Neurologic signs in relation to cognitive function in subcortical ischemic vascular dementia: a CREDOS (clinical research Center for Dementia of South Korea) study. Neurol Sci. 2012;33(4):839–46.CrossRef Choi SH, Kim S, Han SH, Na DL, Kim DK, Cheong HK, Lee JH, Kim SY, Hong CH, Moon SY, et al. Neurologic signs in relation to cognitive function in subcortical ischemic vascular dementia: a CREDOS (clinical research Center for Dementia of South Korea) study. Neurol Sci. 2012;33(4):839–46.CrossRef
25.
go back to reference Rampasek L, Goldenberg A. TensorFlow: Biology's gateway to deep learning? Cell Syst. 2016;2(1):12–4.CrossRef Rampasek L, Goldenberg A. TensorFlow: Biology's gateway to deep learning? Cell Syst. 2016;2(1):12–4.CrossRef
26.
go back to reference Prashanth R, Dutta Roy S, Mandal PK, Ghosh S. High-accuracy detection of early Parkinson's disease through multimodal features and machine learning. Int J Med Inform. 2016;90:13–21.CrossRef Prashanth R, Dutta Roy S, Mandal PK, Ghosh S. High-accuracy detection of early Parkinson's disease through multimodal features and machine learning. Int J Med Inform. 2016;90:13–21.CrossRef
27.
go back to reference Consensus report of the Working Group on. "Molecular and Biochemical Markers of Alzheimer's Disease". The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group. Neurobiol Aging. 1998;19(2):109–16.CrossRef Consensus report of the Working Group on. "Molecular and Biochemical Markers of Alzheimer's Disease". The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group. Neurobiol Aging. 1998;19(2):109–16.CrossRef
28.
go back to reference Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. Lancet. 2011;377(9770):1019–31.CrossRef Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. Lancet. 2011;377(9770):1019–31.CrossRef
29.
go back to reference Salvatore C, Cerasa A, Castiglioni I. MRI characterizes the progressive course of AD and predicts conversion to Alzheimer's dementia 24 months before probable diagnosis. Front Aging Neurosci. 2018;10:135.CrossRef Salvatore C, Cerasa A, Castiglioni I. MRI characterizes the progressive course of AD and predicts conversion to Alzheimer's dementia 24 months before probable diagnosis. Front Aging Neurosci. 2018;10:135.CrossRef
30.
go back to reference Kuhn E, Moulinet I, Perrotin A, La Joie R, Landeau B, Tomadesso C, Bejanin A, Sherif S, De La Sayette V, Desgranges B, et al. Cross-sectional and longitudinal characterization of SCD patients recruited from the community versus from a memory clinic: subjective cognitive decline, psychoaffective factors, cognitive performances, and atrophy progression over time. Alzheimers Res Ther. 2019;11(1):61.CrossRef Kuhn E, Moulinet I, Perrotin A, La Joie R, Landeau B, Tomadesso C, Bejanin A, Sherif S, De La Sayette V, Desgranges B, et al. Cross-sectional and longitudinal characterization of SCD patients recruited from the community versus from a memory clinic: subjective cognitive decline, psychoaffective factors, cognitive performances, and atrophy progression over time. Alzheimers Res Ther. 2019;11(1):61.CrossRef
31.
go back to reference Feldman HH, Jacova C. Mild cognitive impairment. Am J Geriatr Psychiatry. 2005;13(8):645–55.CrossRef Feldman HH, Jacova C. Mild cognitive impairment. Am J Geriatr Psychiatry. 2005;13(8):645–55.CrossRef
32.
go back to reference Saghaei M. An overview of randomization and minimization programs for randomized clinical trials. J Med Signals Sens. 2011;1(1):55–61.CrossRef Saghaei M. An overview of randomization and minimization programs for randomized clinical trials. J Med Signals Sens. 2011;1(1):55–61.CrossRef
33.
go back to reference Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17.CrossRef Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17.CrossRef
34.
go back to reference Kang HS, Kwon JH, Kim S, Na DL, Kim SY, Lee JH, Han SH, Choi SH, Kim S, Carroll BJ, et al. Comparison of neuropsychological profiles in patients with Alzheimer's disease and mixed dementia. J Neurol Sci. 2016;369:134–8.CrossRef Kang HS, Kwon JH, Kim S, Na DL, Kim SY, Lee JH, Han SH, Choi SH, Kim S, Carroll BJ, et al. Comparison of neuropsychological profiles in patients with Alzheimer's disease and mixed dementia. J Neurol Sci. 2016;369:134–8.CrossRef
Metadata
Title
Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data
Authors
Min Ju Kang
Sang Yun Kim
Duk L. Na
Byeong C. Kim
Dong Won Yang
Eun-Joo Kim
Hae Ri Na
Hyun Jeong Han
Jae-Hong Lee
Jong Hun Kim
Kee Hyung Park
Kyung Won Park
Seol-Heui Han
Seong Yoon Kim
Soo Jin Yoon
Bora Yoon
Sang Won Seo
So Young Moon
YoungSoon Yang
Yong S. Shim
Min Jae Baek
Jee Hyang Jeong
Seong Hye Choi
Young Chul Youn
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2019
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-019-0974-x

Other articles of this Issue 1/2019

BMC Medical Informatics and Decision Making 1/2019 Go to the issue