Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2015

Open Access 01-12-2015 | Software

A Bayesian decision support tool for efficient dose individualization of warfarin in adults and children

Authors: Anna-Karin Hamberg, Jacob Hellman, Jonny Dahlberg, E Niclas Jonsson, Mia Wadelius

Published in: BMC Medical Informatics and Decision Making | Issue 1/2015

Login to get access

Abstract

Background

Warfarin is the most widely prescribed anticoagulant for the prevention and treatment of thromboembolic events. Although highly effective, the use of warfarin is limited by a narrow therapeutic range combined with a more than ten-fold difference in the dose required for adequate anticoagulation in adults. An optimal dose that leads to a favourable balance between the wanted antithrombotic effect and the risk of bleeding as measured by the prothrombin time International Normalised Ratio (INR) must be found for each patient. A model describing the time-course of the INR response can be used to aid dose selection before starting therapy (a priori dose prediction) and after therapy has been initiated (a posteriori dose revision).

Results

In this paper we describe a warfarin decision support tool. It was transferred from a population PKPD-model for warfarin developed in NONMEM to a platform independent tool written in Java. The tool proved capable of solving a system of differential equations that represent the pharmacokinetics and pharmacodynamics of warfarin with a performance comparable to NONMEM. To estimate an a priori dose the user enters information on body weight, age, baseline and target INR, and optionally CYP2C9 and VKORC1 genotype. By adding information about previous doses and INR observations, the tool will suggest a new dose a posteriori through Bayesian forecasting. Results are displayed as the predicted dose per day and per week, and graphically as the predicted INR curve. The tool can also be used to predict INR following any given dose regimen, e.g. a fixed or an individualized loading-dose regimen.

Conclusions

We believe that this type of mechanism-based decision support tool could be useful for initiating and maintaining warfarin therapy in the clinic. It will ensure more consistent dose adjustment practices between prescribers, and provide efficient and truly individualized warfarin dosing in both children and adults.
Appendix
Available only for authorised users
Literature
1.
go back to reference Monagle P, Chan AKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Gottl U, et al. Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e737S–801S.CrossRefPubMedPubMedCentral Monagle P, Chan AKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Gottl U, et al. Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e737S–801S.CrossRefPubMedPubMedCentral
2.
go back to reference Daneshjou R, Gamazon ER, Burkley B, Cavallari LH, Johnson JA, Klein TE, et al. Genetic variant in folate homeostasis is associated with lower warfarin dose in African Americans. Blood. 2014;124:2298–305.CrossRefPubMedPubMedCentral Daneshjou R, Gamazon ER, Burkley B, Cavallari LH, Johnson JA, Klein TE, et al. Genetic variant in folate homeostasis is associated with lower warfarin dose in African Americans. Blood. 2014;124:2298–305.CrossRefPubMedPubMedCentral
4.
go back to reference Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJR, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113:784–92.CrossRefPubMedPubMedCentral Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJR, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113:784–92.CrossRefPubMedPubMedCentral
5.
go back to reference Gong IY, Schwarz UI, Crown N, Dresser GK, Lazo-Langner A, Zou G, et al. Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation. PLoS One. 2011;6:e27808.CrossRefPubMedPubMedCentral Gong IY, Schwarz UI, Crown N, Dresser GK, Lazo-Langner A, Zou G, et al. Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation. PLoS One. 2011;6:e27808.CrossRefPubMedPubMedCentral
6.
go back to reference Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One. 2012;7:e44064.CrossRefPubMedPubMedCentral Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One. 2012;7:e44064.CrossRefPubMedPubMedCentral
7.
go back to reference Reynolds MW, Fahrbach K, Hauch O, Wygant G, Estok R, Cella C, et al. Warfarin anticoagulation and outcomes in patients with atrial fibrillation: a systematic review and metaanalysis. Chest. 2004;126:1938–45.CrossRefPubMed Reynolds MW, Fahrbach K, Hauch O, Wygant G, Estok R, Cella C, et al. Warfarin anticoagulation and outcomes in patients with atrial fibrillation: a systematic review and metaanalysis. Chest. 2004;126:1938–45.CrossRefPubMed
8.
go back to reference Zareh M, Davis A, Henderson S. Reversal of warfarin-induced hemorrhage in the emergency department. West JEM. 2011;12:386–92. Zareh M, Davis A, Henderson S. Reversal of warfarin-induced hemorrhage in the emergency department. West JEM. 2011;12:386–92.
9.
go back to reference Ghate SR, Biskupiak J, Ye X, Kwong WJ, Brixner DI. All-cause and bleeding-related health care costs in warfarin-treated patients with atrial fibrillation. J Manag Care Pharm. 2011;17(9):672–84.PubMed Ghate SR, Biskupiak J, Ye X, Kwong WJ, Brixner DI. All-cause and bleeding-related health care costs in warfarin-treated patients with atrial fibrillation. J Manag Care Pharm. 2011;17(9):672–84.PubMed
10.
go back to reference International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–64.CrossRef International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–64.CrossRef
11.
go back to reference Nowak-Gottl U, Dietrich K, Schaffranek D, Eldin NS, Yasui Y, Geisen C, et al. In pediatric patients, age has more impact on dosing of vitamin K antagonists than VKORC1 or CYP2C9 genotypes. Blood. 2010;116:6101–5.CrossRefPubMed Nowak-Gottl U, Dietrich K, Schaffranek D, Eldin NS, Yasui Y, Geisen C, et al. In pediatric patients, age has more impact on dosing of vitamin K antagonists than VKORC1 or CYP2C9 genotypes. Blood. 2010;116:6101–5.CrossRefPubMed
12.
go back to reference Biss TT, Avery PJ, Brandao LR, Chalmers EA, Williams MD, Grainger JD, et al. VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood. 2012;119:868–73.CrossRefPubMed Biss TT, Avery PJ, Brandao LR, Chalmers EA, Williams MD, Grainger JD, et al. VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood. 2012;119:868–73.CrossRefPubMed
13.
go back to reference Moreau C, Bajolle F, Siguret V, Lasne D, Golmard JL, Elie C, et al. Vitamin K antagonists in children with heart disease: height and VKORC1 genotype are the main determinants of the warfarin dose requirement. Blood. 2012;119:861–7.CrossRefPubMedPubMedCentral Moreau C, Bajolle F, Siguret V, Lasne D, Golmard JL, Elie C, et al. Vitamin K antagonists in children with heart disease: height and VKORC1 genotype are the main determinants of the warfarin dose requirement. Blood. 2012;119:861–7.CrossRefPubMedPubMedCentral
14.
go back to reference Sandström M, Karlsson MO, Ljungman P, Hassan Z, Jonsson EN, Nilsson C, et al. Population pharmacokinetic analysis resulting in a tool for dose individualization of busulphan in bone marrow transplantation recipients. Bone Marrow Trans. 2001;28:657–64.CrossRef Sandström M, Karlsson MO, Ljungman P, Hassan Z, Jonsson EN, Nilsson C, et al. Population pharmacokinetic analysis resulting in a tool for dose individualization of busulphan in bone marrow transplantation recipients. Bone Marrow Trans. 2001;28:657–64.CrossRef
15.
go back to reference Wallin J. Dose adaptation based on pharmacometric models. Uppsala: Acta Universitatis Upsaliensis; 2009. Wallin J. Dose adaptation based on pharmacometric models. Uppsala: Acta Universitatis Upsaliensis; 2009.
16.
go back to reference Wallin JE, Friberg LE, Fasth A, Staatz CE. Population pharmacokinetics of tacrolimus in pediatric hematopoietic stem cell transplant recipients: new initial dosage suggestions and a model-based dosage adjustment tool. Ther Drug Mon. 2009;31:457–66.CrossRef Wallin JE, Friberg LE, Fasth A, Staatz CE. Population pharmacokinetics of tacrolimus in pediatric hematopoietic stem cell transplant recipients: new initial dosage suggestions and a model-based dosage adjustment tool. Ther Drug Mon. 2009;31:457–66.CrossRef
17.
go back to reference Dombrowsky E, Jayaraman B, Narayan M, Barrett JS. Evaluating performance of a decision support system to improve methotrexate pharmacotherapy in children and young adults with cancer. Ther Drug Mon. 2011;33:99–107.CrossRef Dombrowsky E, Jayaraman B, Narayan M, Barrett JS. Evaluating performance of a decision support system to improve methotrexate pharmacotherapy in children and young adults with cancer. Ther Drug Mon. 2011;33:99–107.CrossRef
18.
go back to reference Wallin JE, Friberg LE, Karlsson MO. A tool for neutrophil guided dose adaptation in chemotherapy. Comput Methods Programs Biomed. 2009;93:283–91.CrossRefPubMed Wallin JE, Friberg LE, Karlsson MO. A tool for neutrophil guided dose adaptation in chemotherapy. Comput Methods Programs Biomed. 2009;93:283–91.CrossRefPubMed
19.
go back to reference Wright DFB, Duffull SB. A Bayesian dose-individualization method for warfarin. Clin Pharmacokinet. 2013;52:59–68.CrossRefPubMed Wright DFB, Duffull SB. A Bayesian dose-individualization method for warfarin. Clin Pharmacokinet. 2013;52:59–68.CrossRefPubMed
20.
go back to reference Hamberg A-K, Dahl ML, Barban M, Scordo MG, Wadelius M, Pengo V, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther. 2007;81:529–38.CrossRefPubMed Hamberg A-K, Dahl ML, Barban M, Scordo MG, Wadelius M, Pengo V, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther. 2007;81:529–38.CrossRefPubMed
21.
go back to reference Hamberg A-K, Wadelius M, Lindh JD, Dahl ML, Padrini R, Deloukas P, et al. A pharmacometric model describing the relationship between warfarin dose and INR response with respect to variations in CYP2C9, VKORC1, and age. Clin Pharmacol Ther. 2010;87:727–34.CrossRefPubMed Hamberg A-K, Wadelius M, Lindh JD, Dahl ML, Padrini R, Deloukas P, et al. A pharmacometric model describing the relationship between warfarin dose and INR response with respect to variations in CYP2C9, VKORC1, and age. Clin Pharmacol Ther. 2010;87:727–34.CrossRefPubMed
22.
go back to reference Hamberg A-K, Friberg LE, Hanséus K, Ekman-Joelsson B-M, Sunnegårdh J, Jonzon A, et al. Warfarin dose prediction in children using pharmacometric bridging—comparison with published pharmacogenetic dosing algorithms. Eur J Clin Pharmacol. 2013;69(6):1275–83.CrossRefPubMedPubMedCentral Hamberg A-K, Friberg LE, Hanséus K, Ekman-Joelsson B-M, Sunnegårdh J, Jonzon A, et al. Warfarin dose prediction in children using pharmacometric bridging—comparison with published pharmacogenetic dosing algorithms. Eur J Clin Pharmacol. 2013;69(6):1275–83.CrossRefPubMedPubMedCentral
23.
go back to reference Bauer R. NONMEM users guide. Introduction to NONMEM 7.2.0. Ellicott City, Maryland: ICON Development Solutions; 2011. Bauer R. NONMEM users guide. Introduction to NONMEM 7.2.0. Ellicott City, Maryland: ICON Development Solutions; 2011.
25.
go back to reference Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics. 2010;11:781–91.CrossRefPubMedPubMedCentral Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics. 2010;11:781–91.CrossRefPubMedPubMedCentral
26.
go back to reference Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MTM, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115:3827–34.CrossRefPubMedPubMedCentral Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MTM, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115:3827–34.CrossRefPubMedPubMedCentral
27.
go back to reference Hamberg A-K, Wadelius M. Pharmacogenetics-based warfarin dosing in children. Pharmacogenomics. 2014;15:361–74.CrossRefPubMed Hamberg A-K, Wadelius M. Pharmacogenetics-based warfarin dosing in children. Pharmacogenomics. 2014;15:361–74.CrossRefPubMed
Metadata
Title
A Bayesian decision support tool for efficient dose individualization of warfarin in adults and children
Authors
Anna-Karin Hamberg
Jacob Hellman
Jonny Dahlberg
E Niclas Jonsson
Mia Wadelius
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2015
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-014-0128-0

Other articles of this Issue 1/2015

BMC Medical Informatics and Decision Making 1/2015 Go to the issue