Skip to main content
Top
Published in: Clinical Pharmacokinetics 1/2013

01-01-2013 | Original Research Article

A Bayesian Dose-Individualization Method for Warfarin

Authors: Daniel F. B. Wright, Stephen B. Duffull

Published in: Clinical Pharmacokinetics | Issue 1/2013

Login to get access

Abstract

Background

Warfarin is a difficult drug to dose accurately and safely due to large inter-individual variability in dose requirements. Current dosing strategies appear to be sub-optimal, with reports indicating that patients achieve international normalized ratios (INRs) within the therapeutic range only 40–65 % of the time. The consequences of poor INR control are potentially severe with INRs below 2 carrying an increased risk of clotting while INRs >4 increase the risk of major bleeding events. Bayesian forecasting methods have the potential to improve INR control.

Aims

The aims of this study were to (1) prospectively assess the predictive performance of a Bayesian dosing method for warfarin implemented in TCIWorks; and (2) determine the expected time in the therapeutic range (TTR) of INRs predicted using TCIWorks.

Methods

Patients who were initiating warfarin therapy were prospectively recruited from Dunedin Hospital, Dunedin, New Zealand. Warfarin doses were entered into TCIWorks from the first day of therapy until a stable steady-state INR (INRss) was achieved. The predicted INRss values were determined using the first zero to six serially collected INR observations. Observed and predicted INRss values were compared using measures of bias (mean prediction error [MPE]) and imprecision (root mean square error [RMSE]). The TTR was determined by calculating the percentage of predicted INRss values between 2 and 3 when zero to six serially collected INR observations were available.

Results

A total of 55 patients were recruited between March and November 2011. When no observed INR values were available the resulting INRss predictions were positively biased (MPE 0.52 [95 % CI 0.30, 0.73]); however, this disappeared once observed INR values were entered into TCIWorks. The precision of the predicted INRss values improved dramatically once three or more observed INR values were available (RMSE <0.53) compared with no INRs (RMSE 0.96). These results suggest that TCIWorks will be effective at maintaining the INR within the therapeutic INR range (2–3) 65 % of the time when three INR measurements are available and 80 % of the time when six INR measurements are available.

Conclusion

The TCIWorks warfarin dosing method produced accurate and precise INRss predictions. We predict that the method will provide an INR value within the therapeutic range 65–80 % of the time once three or more INR observations are available, making this a useful tool for clinicians and warfarin clinics. Further research to assess the impact of this method on long-term INR control is warranted.
Literature
1.
go back to reference Chiquett E, Amato MG, Bussey HI. Comparison of an anticoagulation clinic with usual medical care: anticoagulation control, patient outcomes, and health care costs. Arch Intern Med. 1998;158:1641–7.CrossRef Chiquett E, Amato MG, Bussey HI. Comparison of an anticoagulation clinic with usual medical care: anticoagulation control, patient outcomes, and health care costs. Arch Intern Med. 1998;158:1641–7.CrossRef
2.
go back to reference Matchar DB, Jacobson A, Dolor R, et al. Effect of home testing of international normalized ratio on clinical events. N Engl J Med. 2010;363:1608–20.PubMedCrossRef Matchar DB, Jacobson A, Dolor R, et al. Effect of home testing of international normalized ratio on clinical events. N Engl J Med. 2010;363:1608–20.PubMedCrossRef
3.
go back to reference van Walraven C, Jennings A, Oake N, et al. Effect of study setting on anticoagulation control. Chest. 2006;129(5):1155–66.PubMedCrossRef van Walraven C, Jennings A, Oake N, et al. Effect of study setting on anticoagulation control. Chest. 2006;129(5):1155–66.PubMedCrossRef
4.
go back to reference Witt DM, Sadler MA, Shanahan RL, et al. Effect of a centralized clinical pharmacy anticoagulation service on the outcomes of anticoagulation therapy. Chest. 2005;127:1515–22.PubMedCrossRef Witt DM, Sadler MA, Shanahan RL, et al. Effect of a centralized clinical pharmacy anticoagulation service on the outcomes of anticoagulation therapy. Chest. 2005;127:1515–22.PubMedCrossRef
5.
go back to reference Anticoagulants in the Secondary Prevention of Events in Coronary Thrombosis (ASPECT) Research Group. Effect of long-term oral anticoagulant treatment on mortality and cardiovascular morbidity. Lancet 1994;343(8896): 499–503. Anticoagulants in the Secondary Prevention of Events in Coronary Thrombosis (ASPECT) Research Group. Effect of long-term oral anticoagulant treatment on mortality and cardiovascular morbidity. Lancet 1994;343(8896): 499–503.
6.
go back to reference The Stroke Prevention in Atrial Fibrillation Investigators. Bleeding during antithrombotic therapy in patients with atrial fibrillation. Arch Intern Med. 1996;156(4):409–16.CrossRef The Stroke Prevention in Atrial Fibrillation Investigators. Bleeding during antithrombotic therapy in patients with atrial fibrillation. Arch Intern Med. 1996;156(4):409–16.CrossRef
7.
go back to reference Jones M, McEwan P, Morgan CL, et al. Evaluation of the pattern of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients with non-valvar atrial fibrillation: a record linkage study in a large British population. Heart. 2005;91(4):472–7.PubMedCrossRef Jones M, McEwan P, Morgan CL, et al. Evaluation of the pattern of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients with non-valvar atrial fibrillation: a record linkage study in a large British population. Heart. 2005;91(4):472–7.PubMedCrossRef
8.
go back to reference Hylek EM, Evans-Molina C, et al. Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation. Circulation. 2007;115(21):2689–96.PubMedCrossRef Hylek EM, Evans-Molina C, et al. Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation. Circulation. 2007;115(21):2689–96.PubMedCrossRef
9.
go back to reference Oake N, Fergusson DA, Forster AJ, et al. Frequency of adverse events in patients with poor anticoagulation: a meta-analysis. CMAJ. 2007;176(11):1589–94.PubMed Oake N, Fergusson DA, Forster AJ, et al. Frequency of adverse events in patients with poor anticoagulation: a meta-analysis. CMAJ. 2007;176(11):1589–94.PubMed
10.
go back to reference Oake N, Jennings A, Forster AJ, et al. Anticoagulation intensity and outcomes among patients prescribed oral anticoagulant therapy: a systematic review and meta-analysis. CMAJ. 2008;179(3):235–44.PubMed Oake N, Jennings A, Forster AJ, et al. Anticoagulation intensity and outcomes among patients prescribed oral anticoagulant therapy: a systematic review and meta-analysis. CMAJ. 2008;179(3):235–44.PubMed
11.
go back to reference Hamberg AK, Wadelius M, Lindh JD, et al. A pharmacometric model describing the relationship between warfarin dose and INR response with respect to variations in CYP2C9, VKORC1, and age. Clin Pharmacol Ther. 2010;87(6):727–34.PubMedCrossRef Hamberg AK, Wadelius M, Lindh JD, et al. A pharmacometric model describing the relationship between warfarin dose and INR response with respect to variations in CYP2C9, VKORC1, and age. Clin Pharmacol Ther. 2010;87(6):727–34.PubMedCrossRef
12.
go back to reference Lind M, Fahlen M, Kosiborod M, et al. Variability of INR and its relationship with mortality, stroke, bleeding and hospitalisations in patients with atrial fibrillation. Thromb Res. 2012;129(1):32–5.PubMedCrossRef Lind M, Fahlen M, Kosiborod M, et al. Variability of INR and its relationship with mortality, stroke, bleeding and hospitalisations in patients with atrial fibrillation. Thromb Res. 2012;129(1):32–5.PubMedCrossRef
13.
go back to reference Lader E, Martin N, Cohen G, et al. Warfarin therapeutic monitoring: is 70% time in the therapeutic range the best we can do? J Clin Pharm Ther. 2012;37(4):375–7.PubMedCrossRef Lader E, Martin N, Cohen G, et al. Warfarin therapeutic monitoring: is 70% time in the therapeutic range the best we can do? J Clin Pharm Ther. 2012;37(4):375–7.PubMedCrossRef
14.
go back to reference White RH, Hong R, Venook AP, et al. Initiation of warfarin therapy: comparison of physician dosing with computer-assisted dosing. J Gen Intern Med. 1987;2(3):141–8.PubMedCrossRef White RH, Hong R, Venook AP, et al. Initiation of warfarin therapy: comparison of physician dosing with computer-assisted dosing. J Gen Intern Med. 1987;2(3):141–8.PubMedCrossRef
15.
go back to reference Motykie GD, Mokhtee D, Zebala LP, et al. The use of a Bayesian forecasting model in the management of warfarin therapy after total hip arthroplasty. J Arthroplasty. 1999;14(8):988–93.PubMedCrossRef Motykie GD, Mokhtee D, Zebala LP, et al. The use of a Bayesian forecasting model in the management of warfarin therapy after total hip arthroplasty. J Arthroplasty. 1999;14(8):988–93.PubMedCrossRef
16.
go back to reference Wright DFB, Duffull SB. Development of a bayesian forecasting method for warfarin dose individualization. Pharm Res. 2011;28(5):1100–11.PubMedCrossRef Wright DFB, Duffull SB. Development of a bayesian forecasting method for warfarin dose individualization. Pharm Res. 2011;28(5):1100–11.PubMedCrossRef
17.
go back to reference The International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.CrossRef The International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.CrossRef
18.
go back to reference Anderson JL, Horne BD, Stevens SM, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116(22):2563–70.PubMedCrossRef Anderson JL, Horne BD, Stevens SM, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116(22):2563–70.PubMedCrossRef
19.
go back to reference Lenzini P, Wadelius M, Kimmel S, et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther. 2010;87(5):572–8.PubMedCrossRef Lenzini P, Wadelius M, Kimmel S, et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther. 2010;87(5):572–8.PubMedCrossRef
20.
go back to reference Sheiner LB, Beal SL. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci. 1982;71(12):1344–8.PubMedCrossRef Sheiner LB, Beal SL. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci. 1982;71(12):1344–8.PubMedCrossRef
21.
go back to reference Holford NH. The target concentration approach to clinical drug development. Clin Pharmacokinet. 1995;29(5):287–91.PubMedCrossRef Holford NH. The target concentration approach to clinical drug development. Clin Pharmacokinet. 1995;29(5):287–91.PubMedCrossRef
22.
go back to reference Holford NHG, Tett S. Therapeutic drug monitoring: the strategy of target concentration intervention. In: Speight E, Holford NGH, editors. Avery’s drug treatment. 4th ed. Auckland: Adis International; 1997. p. 225–59. Holford NHG, Tett S. Therapeutic drug monitoring: the strategy of target concentration intervention. In: Speight E, Holford NGH, editors. Avery’s drug treatment. 4th ed. Auckland: Adis International; 1997. p. 225–59.
23.
go back to reference Holford NH. Target concentration intervention: beyond Y2K. Br J Clin Pharmacol. 2001;52(Suppl 1):55S–9S.PubMedCrossRef Holford NH. Target concentration intervention: beyond Y2K. Br J Clin Pharmacol. 2001;52(Suppl 1):55S–9S.PubMedCrossRef
24.
go back to reference Matthews I, Kirkpatrick C, Holford N. Quantitative justification for target concentration intervention–parameter variability and predictive performance using population pharmacokinetic models for aminoglycosides. Br J Clin Pharmacol. 2004;58(1):8–19.PubMedCrossRef Matthews I, Kirkpatrick C, Holford N. Quantitative justification for target concentration intervention–parameter variability and predictive performance using population pharmacokinetic models for aminoglycosides. Br J Clin Pharmacol. 2004;58(1):8–19.PubMedCrossRef
25.
go back to reference Wadelius M, Chen LY, Lindh JD, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113(4):784–92.PubMedCrossRef Wadelius M, Chen LY, Lindh JD, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113(4):784–92.PubMedCrossRef
26.
go back to reference Takahashi H, Wilkinson GR, Padrini R, et al. CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther. 2004;75(5):376–80.PubMedCrossRef Takahashi H, Wilkinson GR, Padrini R, et al. CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther. 2004;75(5):376–80.PubMedCrossRef
27.
go back to reference Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.PubMedCrossRef Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.PubMedCrossRef
28.
go back to reference Rosendaal FR, Cannegieter SC, van der Meer FJ, Briët EA. Method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost. 1993;69:236–9.PubMed Rosendaal FR, Cannegieter SC, van der Meer FJ, Briët EA. Method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost. 1993;69:236–9.PubMed
29.
go back to reference Fennerty A, Dolben J, Thomas P, et al. Flexible induction dose regimen for warfarin and prediction of maintenance dose. Br Med J (Clin Res Ed). 1984;288(6426):1268–70.CrossRef Fennerty A, Dolben J, Thomas P, et al. Flexible induction dose regimen for warfarin and prediction of maintenance dose. Br Med J (Clin Res Ed). 1984;288(6426):1268–70.CrossRef
30.
go back to reference Tait RC, Sefcick A. A warfarin induction regimen for out-patient anticoagulation in patients with atrial fibrillation. Br J Haematol. 1998;101(3):450–4.PubMedCrossRef Tait RC, Sefcick A. A warfarin induction regimen for out-patient anticoagulation in patients with atrial fibrillation. Br J Haematol. 1998;101(3):450–4.PubMedCrossRef
31.
go back to reference Gedge J, Orme S, Hampton KK, et al. A comparison of a low-dose warfarin induction regimen with the modified Fennerty regimen in elderly inpatients. Age Ageing. 2000;29(1):31–4.PubMedCrossRef Gedge J, Orme S, Hampton KK, et al. A comparison of a low-dose warfarin induction regimen with the modified Fennerty regimen in elderly inpatients. Age Ageing. 2000;29(1):31–4.PubMedCrossRef
32.
go back to reference Ryan PJ, Gilbert M, Rose PE. Computer control of anticoagulant dose for therapeutic management. BMJ. 1989;299(6709):1207–9.PubMedCrossRef Ryan PJ, Gilbert M, Rose PE. Computer control of anticoagulant dose for therapeutic management. BMJ. 1989;299(6709):1207–9.PubMedCrossRef
33.
go back to reference Manotti C, Moia M, Palareti G, et al. Effect of computer-aided management on the quality of treatment in anticoagulated patients: a prospective, randomized, multicenter trial of APROAT (Automated PRogram for Oral Anticoagulant Treatment). Haematologica. 2001;86(10):1060–70.PubMed Manotti C, Moia M, Palareti G, et al. Effect of computer-aided management on the quality of treatment in anticoagulated patients: a prospective, randomized, multicenter trial of APROAT (Automated PRogram for Oral Anticoagulant Treatment). Haematologica. 2001;86(10):1060–70.PubMed
34.
go back to reference Poller L, Shiach CR, MacCallum PK, et al. Multicentre randomised study of computerised anticoagulant dosage. Lancet. 1998;352(9139):1505–9.PubMedCrossRef Poller L, Shiach CR, MacCallum PK, et al. Multicentre randomised study of computerised anticoagulant dosage. Lancet. 1998;352(9139):1505–9.PubMedCrossRef
35.
go back to reference Ageno W, Johnson J, Nowacki B, et al. A computer generated induction system for hospitalized patients starting on oral anticoagulant therapy. Thromb Haemost. 2000;83(6):849–52.PubMed Ageno W, Johnson J, Nowacki B, et al. A computer generated induction system for hospitalized patients starting on oral anticoagulant therapy. Thromb Haemost. 2000;83(6):849–52.PubMed
36.
go back to reference Wilson R, James AH. Computer assisted management of warfarin treatment. Br Med J (Clin Res Ed). 1984;289(6442):422–4.CrossRef Wilson R, James AH. Computer assisted management of warfarin treatment. Br Med J (Clin Res Ed). 1984;289(6442):422–4.CrossRef
37.
go back to reference Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–31.PubMedCrossRef Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–31.PubMedCrossRef
38.
go back to reference McMillin GA, Melis R, Wilson A, et al. Gene-based warfarin dosing compared with standard of care practices in an orthopedic surgery population: a prospective, parallel cohort study. Ther Drug Monit. 2010;32(3):338–45.PubMedCrossRef McMillin GA, Melis R, Wilson A, et al. Gene-based warfarin dosing compared with standard of care practices in an orthopedic surgery population: a prospective, parallel cohort study. Ther Drug Monit. 2010;32(3):338–45.PubMedCrossRef
39.
go back to reference Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2007;83(3):460–70.PubMedCrossRef Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2007;83(3):460–70.PubMedCrossRef
40.
go back to reference Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.PubMedCrossRef Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.PubMedCrossRef
41.
go back to reference Duffull SB, Begg EJ, Robinson BA, et al. A sequential Bayesian algorithm for dose individualisation of carboplatin. Cancer Chemother Pharmacol. 1997;39(4):317–26.PubMedCrossRef Duffull SB, Begg EJ, Robinson BA, et al. A sequential Bayesian algorithm for dose individualisation of carboplatin. Cancer Chemother Pharmacol. 1997;39(4):317–26.PubMedCrossRef
42.
go back to reference Duffull SB, Kirkpatrick CM, Begg EJ. Comparison of two Bayesian approaches to dose-individualization for once-daily aminoglycoside regimens. Br J Clin Pharmacol. 1997;43(2):125–35.PubMedCrossRef Duffull SB, Kirkpatrick CM, Begg EJ. Comparison of two Bayesian approaches to dose-individualization for once-daily aminoglycoside regimens. Br J Clin Pharmacol. 1997;43(2):125–35.PubMedCrossRef
43.
go back to reference Peng B, Boddy AV, Cole M, et al. Comparison of methods for the estimation of carboplatin pharmacokinetics in paediatric cancer patients. Eur J Cancer. 1995;31A(11):1804–10.PubMedCrossRef Peng B, Boddy AV, Cole M, et al. Comparison of methods for the estimation of carboplatin pharmacokinetics in paediatric cancer patients. Eur J Cancer. 1995;31A(11):1804–10.PubMedCrossRef
44.
go back to reference Burton ME, Brater DC, Chen PS, et al. A Bayesian feedback method of aminoglycoside dosing. Clin Pharmacol Ther. 1985;37(3):349–57.PubMedCrossRef Burton ME, Brater DC, Chen PS, et al. A Bayesian feedback method of aminoglycoside dosing. Clin Pharmacol Ther. 1985;37(3):349–57.PubMedCrossRef
45.
go back to reference de Jonge ME, van den Bongard HJ, Huitema AD, et al. Bayesian pharmacokinetically guided dosing of paclitaxel in patients with non-small cell lung cancer. Clin Cancer Res. 2004;10(7):2237–44.PubMedCrossRef de Jonge ME, van den Bongard HJ, Huitema AD, et al. Bayesian pharmacokinetically guided dosing of paclitaxel in patients with non-small cell lung cancer. Clin Cancer Res. 2004;10(7):2237–44.PubMedCrossRef
46.
go back to reference Staatz CE, Tett SE. Maximum a posteriori Bayesian estimation of mycophenolic acid area under the concentration-time curve: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2011;50(12):759–72.PubMedCrossRef Staatz CE, Tett SE. Maximum a posteriori Bayesian estimation of mycophenolic acid area under the concentration-time curve: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2011;50(12):759–72.PubMedCrossRef
47.
go back to reference Vadher B, Patterson DLH, Leaning M. Prediction of the international normalized ratio and maintenance dose during the initiation of warfarin therapy. Br J Clin Pharmacol. 1999;48(1):63–70.PubMedCrossRef Vadher B, Patterson DLH, Leaning M. Prediction of the international normalized ratio and maintenance dose during the initiation of warfarin therapy. Br J Clin Pharmacol. 1999;48(1):63–70.PubMedCrossRef
48.
go back to reference Pitsiu M, Parker EM, Aarons L, et al. A Bayesian method based on clotting factor activity for the prediction of maintenance warfarin dosage regimens. Ther Drug Monit. 2003;25(1):36–40.PubMedCrossRef Pitsiu M, Parker EM, Aarons L, et al. A Bayesian method based on clotting factor activity for the prediction of maintenance warfarin dosage regimens. Ther Drug Monit. 2003;25(1):36–40.PubMedCrossRef
49.
go back to reference Boyle DA, Ludden TM, Carter BL, et al. Evaluation of a Bayesian regression program for predicting warfarin response. Ther Drug Monit. 1989;11(3):276–84.PubMedCrossRef Boyle DA, Ludden TM, Carter BL, et al. Evaluation of a Bayesian regression program for predicting warfarin response. Ther Drug Monit. 1989;11(3):276–84.PubMedCrossRef
50.
go back to reference Svec JM, Coleman RW, Mungall DR, et al. Bayesian pharmacokinetic/pharmacodynamic forecasting of prothrombin response to warfarin therapy: preliminary evaluation. Ther Drug Monit. 1985;7(2):174–80.PubMedCrossRef Svec JM, Coleman RW, Mungall DR, et al. Bayesian pharmacokinetic/pharmacodynamic forecasting of prothrombin response to warfarin therapy: preliminary evaluation. Ther Drug Monit. 1985;7(2):174–80.PubMedCrossRef
51.
go back to reference White RH, Mungall D. Outpatient management of warfarin therapy: comparison of computer-predicted dosage adjustment to skilled professional care. Ther Drug Monit. 1991;13(1):46–50.PubMedCrossRef White RH, Mungall D. Outpatient management of warfarin therapy: comparison of computer-predicted dosage adjustment to skilled professional care. Ther Drug Monit. 1991;13(1):46–50.PubMedCrossRef
52.
go back to reference Farrow L, Mungall D, Raskob G, et al. Predicting the daily prothrombin time response to warfarin. Ther Drug Monit. 1990;12(3):246–9.PubMedCrossRef Farrow L, Mungall D, Raskob G, et al. Predicting the daily prothrombin time response to warfarin. Ther Drug Monit. 1990;12(3):246–9.PubMedCrossRef
53.
go back to reference Kravitz RL, Neufeld JD, Hogarth MA, et al. From insight to implementation: lessons from a multi-site trial of a PDA-based warfarin dose calculator. In: Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in patient safety: from research to implementation (volume 3: implementation issues). Rockville: Agency for Healthcare Research and Quality (US); 2005 Feb. p. 395–409. Kravitz RL, Neufeld JD, Hogarth MA, et al. From insight to implementation: lessons from a multi-site trial of a PDA-based warfarin dose calculator. In: Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in patient safety: from research to implementation (volume 3: implementation issues). Rockville: Agency for Healthcare Research and Quality (US); 2005 Feb. p. 395–409.
54.
go back to reference Theofanous TG, Barile RG. Multiple-dose kinetics of oral anticoagulants: methods of analysis and optimized dosing. J Pharm Sci. 1973;62(2):261–6.PubMedCrossRef Theofanous TG, Barile RG. Multiple-dose kinetics of oral anticoagulants: methods of analysis and optimized dosing. J Pharm Sci. 1973;62(2):261–6.PubMedCrossRef
55.
go back to reference Holford NHG. Clinical pharmacokinetics and pharmacodynamics of warfarin: understanding the dose-effect relationship. Clin Pharmacokinet. 1986;11(6):483–504.PubMedCrossRef Holford NHG. Clinical pharmacokinetics and pharmacodynamics of warfarin: understanding the dose-effect relationship. Clin Pharmacokinet. 1986;11(6):483–504.PubMedCrossRef
Metadata
Title
A Bayesian Dose-Individualization Method for Warfarin
Authors
Daniel F. B. Wright
Stephen B. Duffull
Publication date
01-01-2013
Publisher
Springer International Publishing AG
Published in
Clinical Pharmacokinetics / Issue 1/2013
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-012-0017-6

Other articles of this Issue 1/2013

Clinical Pharmacokinetics 1/2013 Go to the issue