Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Influenza | Research

Anti-rheumatic colchicine phytochemical exhibits potent antiviral activities against avian and seasonal Influenza A viruses (IAVs) via targeting different stages of IAV replication cycle

Authors: Akram Hegazy, Raya Soltane, Ahlam Alasiri, Islam Mostafa, Ahmed M. Metwaly, Ibrahim H. Eissa, Sara H. Mahmoud, Abdou Kamal Allayeh, Noura M. Abo Shama, Ahmed A. Khalil, Ramya S. Barre, Assem Mohamed El-Shazly, Mohamed A. Ali, Luis Martinez-Sobrido, Ahmed Mostafa

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Background

The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications.

Methods

In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential.

Results

Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle.

Conclusion

This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.
Literature
1.
go back to reference Gaitonde DY, Moore FC, Morgan MK. Influenza: diagnosis and treatment. Am Fam Phys. 2019;100(12):751–8. Gaitonde DY, Moore FC, Morgan MK. Influenza: diagnosis and treatment. Am Fam Phys. 2019;100(12):751–8.
2.
go back to reference Lo CY, Tang YS, Shaw PC. Structure and function of Influenza virus ribonucleoprotein. Virus Protein Nucleoprotein Compl. 2018;88:95–128.CrossRef Lo CY, Tang YS, Shaw PC. Structure and function of Influenza virus ribonucleoprotein. Virus Protein Nucleoprotein Compl. 2018;88:95–128.CrossRef
3.
go back to reference Collin EA, Sheng Z, Lang Y, Ma W, Hause BM, Li F. Cocirculation of two distinct genetic and antigenic lineages of proposed Influenza D virus in cattle. J Virol. 2015;89(2):1036–42.PubMedCrossRef Collin EA, Sheng Z, Lang Y, Ma W, Hause BM, Li F. Cocirculation of two distinct genetic and antigenic lineages of proposed Influenza D virus in cattle. J Virol. 2015;89(2):1036–42.PubMedCrossRef
4.
go back to reference Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol. 2005;3(8):591–600.PubMedCrossRef Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol. 2005;3(8):591–600.PubMedCrossRef
5.
go back to reference Ding Y, Dou J, Teng Z, Yu J, Wang T, Lu N, Wang H, Zhou C. Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase. Arch Virol. 2014;159(12):3269–78.PubMedCrossRef Ding Y, Dou J, Teng Z, Yu J, Wang T, Lu N, Wang H, Zhou C. Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase. Arch Virol. 2014;159(12):3269–78.PubMedCrossRef
6.
go back to reference King PT, Londrigan SL. The 1918 influenza and COVID-19 pandemics: the effect of age on outcomes. Respirol (Carlton Vic). 2021;26(9):840.CrossRef King PT, Londrigan SL. The 1918 influenza and COVID-19 pandemics: the effect of age on outcomes. Respirol (Carlton Vic). 2021;26(9):840.CrossRef
8.
9.
go back to reference Nguyen LT, Stevenson MA, Firestone SM, Sims LD, Chu DH, Van Nguyen L, Nguyen TN, Le KT, Isoda N, Matsuno K. Spatiotemporal and risk analysis of H5 highly pathogenic avian influenza in Vietnam, 2014–2017. Prev Vet Med. 2020;178:104678.PubMedCrossRef Nguyen LT, Stevenson MA, Firestone SM, Sims LD, Chu DH, Van Nguyen L, Nguyen TN, Le KT, Isoda N, Matsuno K. Spatiotemporal and risk analysis of H5 highly pathogenic avian influenza in Vietnam, 2014–2017. Prev Vet Med. 2020;178:104678.PubMedCrossRef
10.
go back to reference Sealy JE, Fournie G, Trang PH, Dang NH, Sadeyen JR, Thanh TL, van Doorn HR, Bryant JE, Iqbal M. Poultry trading behaviours in Vietnamese live bird markets as risk factors for avian influenza infection in chickens. Transbound Emerg Dis. 2019;66(6):2507–16.PubMedPubMedCentralCrossRef Sealy JE, Fournie G, Trang PH, Dang NH, Sadeyen JR, Thanh TL, van Doorn HR, Bryant JE, Iqbal M. Poultry trading behaviours in Vietnamese live bird markets as risk factors for avian influenza infection in chickens. Transbound Emerg Dis. 2019;66(6):2507–16.PubMedPubMedCentralCrossRef
11.
go back to reference Ulyanova V, Shah Mahmud R, Laikov A, Dudkina E, Markelova M, Mostafa A, Pleschka S, Ilinskaya O. Anti-influenza activity of the ribonuclease binase: Cellular targets detected by quantitative proteomics. Int J Mol Sci. 2020;21(21):8294.PubMedPubMedCentralCrossRef Ulyanova V, Shah Mahmud R, Laikov A, Dudkina E, Markelova M, Mostafa A, Pleschka S, Ilinskaya O. Anti-influenza activity of the ribonuclease binase: Cellular targets detected by quantitative proteomics. Int J Mol Sci. 2020;21(21):8294.PubMedPubMedCentralCrossRef
12.
go back to reference Osterholm MT, Kelley NS, Sommer A, Belongia EA. Efficacy and effectiveness of Influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(1):36–44.PubMedCrossRef Osterholm MT, Kelley NS, Sommer A, Belongia EA. Efficacy and effectiveness of Influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(1):36–44.PubMedCrossRef
13.
go back to reference El-Shesheny R, Bagato O, Kandeil A, Mostafa A, Mahmoud SH, Hassanneen HM, Webby RJ, Ali MA, Kayali G. Re-emergence of amantadine-resistant variants among highly pathogenic avian influenza H5N1 viruses in Egypt. Infect Genet Evol. 2016;46:102–9.PubMedCrossRef El-Shesheny R, Bagato O, Kandeil A, Mostafa A, Mahmoud SH, Hassanneen HM, Webby RJ, Ali MA, Kayali G. Re-emergence of amantadine-resistant variants among highly pathogenic avian influenza H5N1 viruses in Egypt. Infect Genet Evol. 2016;46:102–9.PubMedCrossRef
14.
go back to reference Choi J-G, Kim YS, Kim JH, Chung H-S. Antiviral activity of ethanol extract of Geranii Herba and its components against Influenza viruses via neuraminidase inhibition. Sci Rep. 2019;9(1):1–12. Choi J-G, Kim YS, Kim JH, Chung H-S. Antiviral activity of ethanol extract of Geranii Herba and its components against Influenza viruses via neuraminidase inhibition. Sci Rep. 2019;9(1):1–12.
15.
go back to reference Zhang S, Tian H, Cui J, Xiao J, Wang M, Hu Y. The c-Jun N-terminal kinase (JNK) is involved in H5N1 influenza a virus RNA and protein synthesis. Arch Virol. 2016;161(2):345–51.PubMedCrossRef Zhang S, Tian H, Cui J, Xiao J, Wang M, Hu Y. The c-Jun N-terminal kinase (JNK) is involved in H5N1 influenza a virus RNA and protein synthesis. Arch Virol. 2016;161(2):345–51.PubMedCrossRef
16.
go back to reference Cetina-Montejo L, Ayora-Talavera G, Borges-Argáez R. Zeylanone epoxide isolated from diospyros anisandra stem bark inhibits influenza virus in vitro. Arch Virol. 2019;164(6):1543–52.PubMedCrossRef Cetina-Montejo L, Ayora-Talavera G, Borges-Argáez R. Zeylanone epoxide isolated from diospyros anisandra stem bark inhibits influenza virus in vitro. Arch Virol. 2019;164(6):1543–52.PubMedCrossRef
17.
go back to reference Tran TT, Kim M, Jang Y, Lee HW, Nguyen HT, Nguyen TN, Park HW, Le Dang Q, Kim J-C. Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant polygonum chinense. BMC Complement Altern Med. 2017;17(1):1–11.CrossRef Tran TT, Kim M, Jang Y, Lee HW, Nguyen HT, Nguyen TN, Park HW, Le Dang Q, Kim J-C. Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant polygonum chinense. BMC Complement Altern Med. 2017;17(1):1–11.CrossRef
18.
go back to reference Mehrbod P, Ebrahimi SN, Fotouhi F, Eskandari F, Eloff JN, McGaw LJ, Fasina FO. Experimental validation and computational modeling of anti-influenza effects of quercetin-3-O-α-L-rhamnopyranoside from indigenous South African medicinal plant Rapanea melanophloeos. BMC Complement Altern Med. 2019;19(1):1–11.CrossRef Mehrbod P, Ebrahimi SN, Fotouhi F, Eskandari F, Eloff JN, McGaw LJ, Fasina FO. Experimental validation and computational modeling of anti-influenza effects of quercetin-3-O-α-L-rhamnopyranoside from indigenous South African medicinal plant Rapanea melanophloeos. BMC Complement Altern Med. 2019;19(1):1–11.CrossRef
19.
go back to reference Watanabe K, Rahmasari R, Matsunaga A, Haruyama T, Kobayashi N. Anti-influenza viral effects of honey in vitro: potent high activity of manuka honey. Arch Med Res. 2014;45(5):359–65.PubMedCrossRef Watanabe K, Rahmasari R, Matsunaga A, Haruyama T, Kobayashi N. Anti-influenza viral effects of honey in vitro: potent high activity of manuka honey. Arch Med Res. 2014;45(5):359–65.PubMedCrossRef
20.
go back to reference Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res. 2020;10(2):354–67.PubMedCrossRef Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res. 2020;10(2):354–67.PubMedCrossRef
21.
go back to reference Lenz E, Müller C, Mostafa A, Dzieciolowski J, Kanrai P, Dam S, Cwientzek U, Prenner L-N, Pleschka S. Authorised medicinal product Aspecton® oral drops containing thyme extract KMTv24497 shows antiviral activity against viruses which cause respiratory infections. J Herb Med. 2018;13:26–33.CrossRef Lenz E, Müller C, Mostafa A, Dzieciolowski J, Kanrai P, Dam S, Cwientzek U, Prenner L-N, Pleschka S. Authorised medicinal product Aspecton® oral drops containing thyme extract KMTv24497 shows antiviral activity against viruses which cause respiratory infections. J Herb Med. 2018;13:26–33.CrossRef
22.
go back to reference Amirkia V, Heinrich M. Alkaloids as drug leads–A predictive structural and biodiversity-based analysis. Phytochem Lett. 2014;10:xlviii–liii.CrossRef Amirkia V, Heinrich M. Alkaloids as drug leads–A predictive structural and biodiversity-based analysis. Phytochem Lett. 2014;10:xlviii–liii.CrossRef
23.
go back to reference Harborne JB. Textbook of Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis. 5th Edition. London: Chapman and Hall Ltd; 1998. p. 21–72. Harborne JB. Textbook of Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis. 5th Edition. London: Chapman and Hall Ltd; 1998. p. 21–72.
24.
go back to reference Lu JJ, Bao JL, Chen XP, Huang M, Wang YT. Alkaloids isolated from natural herbs as the anticancer agents. Evid-based Complement Altern Med. 2012;2012:485042.CrossRef Lu JJ, Bao JL, Chen XP, Huang M, Wang YT. Alkaloids isolated from natural herbs as the anticancer agents. Evid-based Complement Altern Med. 2012;2012:485042.CrossRef
25.
go back to reference Dey P, Kundu A, Kumar A, Gupta M, Lee BM, Bhakta T, Dash S, Kim HS. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent advances in natural products analysis. edn: Elsevier; 2020. p. 505–67.CrossRef Dey P, Kundu A, Kumar A, Gupta M, Lee BM, Bhakta T, Dash S, Kim HS. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent advances in natural products analysis. edn: Elsevier; 2020. p. 505–67.CrossRef
26.
go back to reference Shi Z, Zou W, Zhu Z, Xiong Z, Li S, Dong P, Zhu Z. Tropane alkaloids (hyoscyamine, scopolamine and atropine) from genus Datura: extractions, contents, syntheses and effects. Ind Crops Prod. 2022;186:115283.CrossRef Shi Z, Zou W, Zhu Z, Xiong Z, Li S, Dong P, Zhu Z. Tropane alkaloids (hyoscyamine, scopolamine and atropine) from genus Datura: extractions, contents, syntheses and effects. Ind Crops Prod. 2022;186:115283.CrossRef
27.
go back to reference Roy H, Nandi S. In-silico modeling in drug metabolism and interaction: current strategies of lead discovery. Curr Pharm Design. 2019;25(31):3292–305.CrossRef Roy H, Nandi S. In-silico modeling in drug metabolism and interaction: current strategies of lead discovery. Curr Pharm Design. 2019;25(31):3292–305.CrossRef
28.
go back to reference Eissa IH, Ibrahim MK, Metwaly AM, Belal A, Mehany AB, Abdelhady AA, Elhendawy MA, Radwan MM, ElSohly MA, Mahdy HA. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4 (3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg Chem. 2021;107:104532.PubMedCrossRef Eissa IH, Ibrahim MK, Metwaly AM, Belal A, Mehany AB, Abdelhady AA, Elhendawy MA, Radwan MM, ElSohly MA, Mahdy HA. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4 (3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg Chem. 2021;107:104532.PubMedCrossRef
29.
go back to reference Zhanzhaxina A, Suleimen Y, Metwaly AM, Eissa IH, Elkaeed EB, Suleimen R, Ishmuratova M, Akatan K, Luyten W. In vitro and in silico cytotoxic and antibacterial activities of a diterpene from cousinia alata schrenk. J Chem. 2021;2021:1.CrossRef Zhanzhaxina A, Suleimen Y, Metwaly AM, Eissa IH, Elkaeed EB, Suleimen R, Ishmuratova M, Akatan K, Luyten W. In vitro and in silico cytotoxic and antibacterial activities of a diterpene from cousinia alata schrenk. J Chem. 2021;2021:1.CrossRef
30.
go back to reference Imieje VO, Zaki AA, Metwaly AM, Eissa IH, Elkaeed EB, Ali Z, Khan IA, Falodun A. Antileishmanial derivatives of humulene from Asteriscus hierochunticus with in silico tubulin inhibition potential. Rec Nat Prod. 2021;16:150–71. Imieje VO, Zaki AA, Metwaly AM, Eissa IH, Elkaeed EB, Ali Z, Khan IA, Falodun A. Antileishmanial derivatives of humulene from Asteriscus hierochunticus with in silico tubulin inhibition potential. Rec Nat Prod. 2021;16:150–71.
31.
go back to reference Mostafa A, Mahmoud SH, Shehata M, Müller C, Kandeil A, El-Shesheny R, Nooh HZ, Kayali G, Ali MA, Pleschka S. PA from a recent H9N2 (G1-Like) Avian Influenza a virus (AIV) strain carrying lysine 367 confers altered replication efficiency and pathogenicity to contemporaneous H5N1 in mammalian systems. Viruses. 2020;12(9):1046.PubMedPubMedCentralCrossRef Mostafa A, Mahmoud SH, Shehata M, Müller C, Kandeil A, El-Shesheny R, Nooh HZ, Kayali G, Ali MA, Pleschka S. PA from a recent H9N2 (G1-Like) Avian Influenza a virus (AIV) strain carrying lysine 367 confers altered replication efficiency and pathogenicity to contemporaneous H5N1 in mammalian systems. Viruses. 2020;12(9):1046.PubMedPubMedCentralCrossRef
32.
go back to reference Petersen H, Mostafa A, Tantawy MA, Iqbal AA, Hoffmann D, Tallam A, Selvakumar B, Pessler F, Beer M, Rautenschlein S. NS segment of a 1918 Influenza a virus-descendent enhances replication of H1N1pdm09 and virus-induced cellular immune response in mammalian and avian systems. Front Microbiol. 2018;9:526.PubMedPubMedCentralCrossRef Petersen H, Mostafa A, Tantawy MA, Iqbal AA, Hoffmann D, Tallam A, Selvakumar B, Pessler F, Beer M, Rautenschlein S. NS segment of a 1918 Influenza a virus-descendent enhances replication of H1N1pdm09 and virus-induced cellular immune response in mammalian and avian systems. Front Microbiol. 2018;9:526.PubMedPubMedCentralCrossRef
33.
go back to reference Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27(3):493–7.CrossRef Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27(3):493–7.CrossRef
34.
go back to reference Gaush CR, Smith TF. Replication and plaque assay of influenza virus in an established line of canine kidney cells. Appl Microbiol. 1968;16(4):588–94.PubMedPubMedCentralCrossRef Gaush CR, Smith TF. Replication and plaque assay of influenza virus in an established line of canine kidney cells. Appl Microbiol. 1968;16(4):588–94.PubMedPubMedCentralCrossRef
35.
go back to reference Mostafa A, Kandeil A, Kutkat O, Moatasim Y, Rashad AA, Shehata M, Gomaa MR, Mahrous N, Mahmoud SH, AMM Elshaier, Y. FDA-approved drugs with potent in vitro antiviral activity against severe acute respiratory syndrome coronavirus 2. Pharmaceuticals. 2020;13(12):443.PubMedPubMedCentralCrossRef Mostafa A, Kandeil A, Kutkat O, Moatasim Y, Rashad AA, Shehata M, Gomaa MR, Mahrous N, Mahmoud SH, AMM Elshaier, Y. FDA-approved drugs with potent in vitro antiviral activity against severe acute respiratory syndrome coronavirus 2. Pharmaceuticals. 2020;13(12):443.PubMedPubMedCentralCrossRef
36.
go back to reference Skariyachan S, Gopal D, Muddebihalkar AG, Uttarkar A, Niranjan V. Structural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: molecular modelling, docking and dynamic simulation studies. Comput Biol Med. 2021;132:104325.PubMedPubMedCentralCrossRef Skariyachan S, Gopal D, Muddebihalkar AG, Uttarkar A, Niranjan V. Structural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: molecular modelling, docking and dynamic simulation studies. Comput Biol Med. 2021;132:104325.PubMedPubMedCentralCrossRef
37.
go back to reference Zhou J, Chan L, Zhou S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem. 2012;19(21):3523–31.PubMedCrossRef Zhou J, Chan L, Zhou S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem. 2012;19(21):3523–31.PubMedCrossRef
38.
go back to reference Anwar S, Bhandari U, Panda BP, Dubey K, Khan W, Ahmad S. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk. J Pharm Biomed Anal. 2018;159:100–12.PubMedCrossRef Anwar S, Bhandari U, Panda BP, Dubey K, Khan W, Ahmad S. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk. J Pharm Biomed Anal. 2018;159:100–12.PubMedCrossRef
39.
go back to reference Özçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. 2011;49(4):396–402.PubMedCrossRef Özçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. 2011;49(4):396–402.PubMedCrossRef
40.
go back to reference Reid SM, Westbury C, Guzys AT, Reddihough DS. Anticholinergic medications for reducing drooling in children with developmental disability. Dev Med Child Neurol. 2020;62(3):346–53.PubMedCrossRef Reid SM, Westbury C, Guzys AT, Reddihough DS. Anticholinergic medications for reducing drooling in children with developmental disability. Dev Med Child Neurol. 2020;62(3):346–53.PubMedCrossRef
41.
go back to reference Vlietinck A, De Bruyne T, Apers S, Pieters L. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med. 1998;64(02):97–109.PubMedCrossRef Vlietinck A, De Bruyne T, Apers S, Pieters L. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med. 1998;64(02):97–109.PubMedCrossRef
42.
go back to reference Wyde PR, Gilbert BE, Ambrose MW. Comparison of the anti-respiratory syncytial virus activity and toxicity of papaverine hydrochloride and pyrazofurin in vitro and in vivo. Antiviral Res. 1989;11(1):15–26.PubMedCrossRef Wyde PR, Gilbert BE, Ambrose MW. Comparison of the anti-respiratory syncytial virus activity and toxicity of papaverine hydrochloride and pyrazofurin in vitro and in vivo. Antiviral Res. 1989;11(1):15–26.PubMedCrossRef
43.
go back to reference Aggarwal M, Leser GP, Lamb RA. Repurposing papaverine as an antiviral agent against Influenza viruses and paramyxoviruses. J Virol. 2020;94(6):01888–e01819.CrossRef Aggarwal M, Leser GP, Lamb RA. Repurposing papaverine as an antiviral agent against Influenza viruses and paramyxoviruses. J Virol. 2020;94(6):01888–e01819.CrossRef
44.
go back to reference Shih T-M, McDonough J. Efficacy of biperiden and atropine as anticonvulsant treatment for organophosphorus nerve agent intoxication. Arch Toxicol. 2000;74(3):165–72.PubMedCrossRef Shih T-M, McDonough J. Efficacy of biperiden and atropine as anticonvulsant treatment for organophosphorus nerve agent intoxication. Arch Toxicol. 2000;74(3):165–72.PubMedCrossRef
45.
go back to reference Malakar S, Sreelatha L, Dechtawewat T, Noisakran S, Yenchitsomanus P-t, Chu JJH, Limjindaporn T. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res. 2018;255:171–8.PubMedCrossRef Malakar S, Sreelatha L, Dechtawewat T, Noisakran S, Yenchitsomanus P-t, Chu JJH, Limjindaporn T. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res. 2018;255:171–8.PubMedCrossRef
46.
go back to reference Große M, Ruetalo N, Layer M, Hu D, Businger R, Rheber S, Setz C, Rauch P, Auth J, Fröba M. Quinine inhibits Infection of human cell lines with SARS-CoV-2. Viruses. 2021;13(4):647.PubMedPubMedCentralCrossRef Große M, Ruetalo N, Layer M, Hu D, Businger R, Rheber S, Setz C, Rauch P, Auth J, Fröba M. Quinine inhibits Infection of human cell lines with SARS-CoV-2. Viruses. 2021;13(4):647.PubMedPubMedCentralCrossRef
47.
go back to reference Seeler A, Graessle O, Ott W. Effect of quinine on Influenza virus Infections in mice. J Infect Dis. 1946;79:156–8.PubMedCrossRef Seeler A, Graessle O, Ott W. Effect of quinine on Influenza virus Infections in mice. J Infect Dis. 1946;79:156–8.PubMedCrossRef
48.
go back to reference Yamazaki Z, Tagaya I. Antiviral effects of atropine and caffeine. J Gen Virol. 1980;50(2):429–31.PubMedCrossRef Yamazaki Z, Tagaya I. Antiviral effects of atropine and caffeine. J Gen Virol. 1980;50(2):429–31.PubMedCrossRef
49.
go back to reference Lipton RB, Diener H-C, Robbins MS, Garas SY, Patel K. Caffeine in the management of patients with headache. J Headache Pain. 2017;18(1):1–11.CrossRef Lipton RB, Diener H-C, Robbins MS, Garas SY, Patel K. Caffeine in the management of patients with headache. J Headache Pain. 2017;18(1):1–11.CrossRef
50.
go back to reference Tej GNVC, Neogi K, Nayak PK. Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody. Int Immunopharmacol. 2019;77:106002.PubMedCrossRef Tej GNVC, Neogi K, Nayak PK. Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody. Int Immunopharmacol. 2019;77:106002.PubMedCrossRef
51.
go back to reference Murayama M, Tsujimoto K, Uozaki M, Katsuyama Y, Yamasaki H, Utsunomiya H, Koyama AH. Effect of caffeine on the multiplication of DNA and RNA viruses. Mol Med Rep. 2008;1(2):251–5.PubMed Murayama M, Tsujimoto K, Uozaki M, Katsuyama Y, Yamasaki H, Utsunomiya H, Koyama AH. Effect of caffeine on the multiplication of DNA and RNA viruses. Mol Med Rep. 2008;1(2):251–5.PubMed
52.
go back to reference Batista MN, Carneiro BM, Braga ACS, Rahal P. Caffeine inhibits hepatitis C virus replication in vitro. Arch Virol. 2015;160(2):399–407.PubMedCrossRef Batista MN, Carneiro BM, Braga ACS, Rahal P. Caffeine inhibits hepatitis C virus replication in vitro. Arch Virol. 2015;160(2):399–407.PubMedCrossRef
53.
go back to reference Mohammadi S, Heidarizadeh M, Entesari M, Esmailpour A, Esmailpour M, Moradi R, Sakhaee N, Doustkhah E. In silico investigation on the inhibiting role of nicotine/caffeine by blocking the S protein of SARS-CoV-2 versus ACE2 receptor. Microorganisms. 2020;8(10):1600.PubMedPubMedCentralCrossRef Mohammadi S, Heidarizadeh M, Entesari M, Esmailpour A, Esmailpour M, Moradi R, Sakhaee N, Doustkhah E. In silico investigation on the inhibiting role of nicotine/caffeine by blocking the S protein of SARS-CoV-2 versus ACE2 receptor. Microorganisms. 2020;8(10):1600.PubMedPubMedCentralCrossRef
54.
go back to reference Yim N-H, Kim A, Jung YP, Kim T, Ma CJ, Ma JY. Fermented So-Cheong-Ryong-Tang (FCY) induces apoptosis via the activation of caspases and the regulation of MAPK signaling pathways in cancer cells. BMC Complement Altern Med. 2015;15(1):1–11.CrossRef Yim N-H, Kim A, Jung YP, Kim T, Ma CJ, Ma JY. Fermented So-Cheong-Ryong-Tang (FCY) induces apoptosis via the activation of caspases and the regulation of MAPK signaling pathways in cancer cells. BMC Complement Altern Med. 2015;15(1):1–11.CrossRef
55.
go back to reference Wei W, Du H, Shao C, Zhou H, Lu Y, Yu L, Wan H, He Y. Screening of antiviral components of Ma Huang Tang and investigation on the ephedra alkaloids efficacy on influenza virus type A. Front Pharmacol. 2019;10:961.PubMedPubMedCentralCrossRef Wei W, Du H, Shao C, Zhou H, Lu Y, Yu L, Wan H, He Y. Screening of antiviral components of Ma Huang Tang and investigation on the ephedra alkaloids efficacy on influenza virus type A. Front Pharmacol. 2019;10:961.PubMedPubMedCentralCrossRef
56.
go back to reference Ebada ME. Drug repurposing may generate novel approaches to treating depression. J Pharm Pharmacol. 2017;69(11):1428–36.PubMedCrossRef Ebada ME. Drug repurposing may generate novel approaches to treating depression. J Pharm Pharmacol. 2017;69(11):1428–36.PubMedCrossRef
57.
go back to reference Jain N, Verma A, Jain N. Formulation and investigation of pilocarpine hydrochloride niosomal gels for the treatment of glaucoma: intraocular pressure measurement in white albino rabbits. Drug Delivery. 2020;27(1):888–99.PubMedPubMedCentralCrossRef Jain N, Verma A, Jain N. Formulation and investigation of pilocarpine hydrochloride niosomal gels for the treatment of glaucoma: intraocular pressure measurement in white albino rabbits. Drug Delivery. 2020;27(1):888–99.PubMedPubMedCentralCrossRef
58.
go back to reference Nidorf SM, Fiolet AT, Mosterd A, Eikelboom JW, Schut A, Opstal TS, The SH, Xu X-F, Ireland MA, Lenderink T. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–47.PubMedCrossRef Nidorf SM, Fiolet AT, Mosterd A, Eikelboom JW, Schut A, Opstal TS, The SH, Xu X-F, Ireland MA, Lenderink T. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–47.PubMedCrossRef
60.
go back to reference Yousefi H, Mashouri L, Okpechi SC, Alahari N, Alahari SK. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 Infection: a review describing drug mechanisms of action. Biochem Pharmacol. 2021;183:114296.PubMedCrossRef Yousefi H, Mashouri L, Okpechi SC, Alahari N, Alahari SK. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 Infection: a review describing drug mechanisms of action. Biochem Pharmacol. 2021;183:114296.PubMedCrossRef
61.
go back to reference McNicholl IR, McNicholl JJ. Neuraminidase inhibitors: zanamivir and oseltamivir. Ann Pharmacother. 2001;35(1):57–70.PubMedCrossRef McNicholl IR, McNicholl JJ. Neuraminidase inhibitors: zanamivir and oseltamivir. Ann Pharmacother. 2001;35(1):57–70.PubMedCrossRef
62.
go back to reference Mahmoud A, Mostafa A, Al-Karmalawy AA, Zidan A, Abulkhair HS, Mahmoud SH, Shehata M, Elhefnawi MM, Ali MA. Telaprevir is a potential drug for repurposing against SARS-CoV-2: computational and in vitro studies. Heliyon. 2021;7(9):e07962.PubMedPubMedCentralCrossRef Mahmoud A, Mostafa A, Al-Karmalawy AA, Zidan A, Abulkhair HS, Mahmoud SH, Shehata M, Elhefnawi MM, Ali MA. Telaprevir is a potential drug for repurposing against SARS-CoV-2: computational and in vitro studies. Heliyon. 2021;7(9):e07962.PubMedPubMedCentralCrossRef
63.
go back to reference Alesawy MS, Abdallah AE, Taghour MS, Elkaeed EB, Eissa H, Metwaly I. In silico studies of some isoflavonoids as potential candidates against COVID-19 targeting human ACE2 (hACE2) and viral main protease (Mpro). Molecules. 2021;26(9):2806.PubMedPubMedCentralCrossRef Alesawy MS, Abdallah AE, Taghour MS, Elkaeed EB, Eissa H, Metwaly I. In silico studies of some isoflavonoids as potential candidates against COVID-19 targeting human ACE2 (hACE2) and viral main protease (Mpro). Molecules. 2021;26(9):2806.PubMedPubMedCentralCrossRef
64.
go back to reference Nandi S, Kumar M, Saxena AK. Repurposing of drugs and HTS to combat SARS-CoV-2 main protease utilizing structure-based molecular docking. Lett Drug Des Disc. 2022;19(5):413–27.CrossRef Nandi S, Kumar M, Saxena AK. Repurposing of drugs and HTS to combat SARS-CoV-2 main protease utilizing structure-based molecular docking. Lett Drug Des Disc. 2022;19(5):413–27.CrossRef
65.
go back to reference Hagras M, El Deeb MA, Elzahabi HS, Elkaeed EB, Mehany AB, Eissa IH. Discovery of new quinolines as potent colchicine binding site inhibitors: design, synthesis, docking studies, and anti-proliferative evaluation. J Enzyme Inhib Med Chem. 2021;36(1):640–58.PubMedPubMedCentralCrossRef Hagras M, El Deeb MA, Elzahabi HS, Elkaeed EB, Mehany AB, Eissa IH. Discovery of new quinolines as potent colchicine binding site inhibitors: design, synthesis, docking studies, and anti-proliferative evaluation. J Enzyme Inhib Med Chem. 2021;36(1):640–58.PubMedPubMedCentralCrossRef
66.
go back to reference Eissa IH, Khalifa MM, Elkaeed EB, Hafez EE, Alsfouk AA, Metwaly AM. In silico exploration of potential natural inhibitors against SARS-CoV-2 nsp10. Molecules. 2021;26(20):6151.PubMedPubMedCentralCrossRef Eissa IH, Khalifa MM, Elkaeed EB, Hafez EE, Alsfouk AA, Metwaly AM. In silico exploration of potential natural inhibitors against SARS-CoV-2 nsp10. Molecules. 2021;26(20):6151.PubMedPubMedCentralCrossRef
67.
go back to reference Eissa IH, Dahab MA, Ibrahim MK, Alsaif NA, Alanazi A, Eissa SI, Mehany AB, Beauchemin AM. Design and discovery of new antiproliferative 1, 2, 4-triazin-3 (2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg Chem. 2021;112:104965.PubMedCrossRef Eissa IH, Dahab MA, Ibrahim MK, Alsaif NA, Alanazi A, Eissa SI, Mehany AB, Beauchemin AM. Design and discovery of new antiproliferative 1, 2, 4-triazin-3 (2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg Chem. 2021;112:104965.PubMedCrossRef
68.
go back to reference Lemon SM, Mahmoud AA. The threat of pandemic influenza: are we ready? Biosec Bioterror. 2005;3(1):70–3.CrossRef Lemon SM, Mahmoud AA. The threat of pandemic influenza: are we ready? Biosec Bioterror. 2005;3(1):70–3.CrossRef
69.
go back to reference Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, Cohen C, Gran JM, Schanzer D, Cowling BJ. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. The Lancet. 2018;391(10127):1285–300.CrossRef Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, Cohen C, Gran JM, Schanzer D, Cowling BJ. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. The Lancet. 2018;391(10127):1285–300.CrossRef
70.
go back to reference Nuwarda RF, Alharbi AA, Kayser V. An overview of Influenza viruses and vaccines. Vaccines (Basel). 2021;9(9):1032.PubMedCrossRef Nuwarda RF, Alharbi AA, Kayser V. An overview of Influenza viruses and vaccines. Vaccines (Basel). 2021;9(9):1032.PubMedCrossRef
71.
go back to reference Gubareva LV, Kaiser L, Hayden FG. Influenza virus neuraminidase inhibitors. Lancet. 2000;355(9206):827–35.PubMedCrossRef Gubareva LV, Kaiser L, Hayden FG. Influenza virus neuraminidase inhibitors. Lancet. 2000;355(9206):827–35.PubMedCrossRef
73.
go back to reference Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and antiviral treatment against Avian influenza H5Nx viruses: a harbinger of virus control or evolution. Vaccines. 2023;11:1628.PubMedPubMedCentralCrossRef Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and antiviral treatment against Avian influenza H5Nx viruses: a harbinger of virus control or evolution. Vaccines. 2023;11:1628.PubMedPubMedCentralCrossRef
74.
go back to reference Zhang T, Xiao M, Wong C-K, Mok K-PC, Zhao X, Ti H, Shaw P-C. Sheng Jiang San, a traditional multi-herb formulation, exerts anti-influenza effects in vitro and in vivo via neuraminidase inhibition and immune regulation. BMC Complement Altern Med. 2018;18(1):1–9.CrossRef Zhang T, Xiao M, Wong C-K, Mok K-PC, Zhao X, Ti H, Shaw P-C. Sheng Jiang San, a traditional multi-herb formulation, exerts anti-influenza effects in vitro and in vivo via neuraminidase inhibition and immune regulation. BMC Complement Altern Med. 2018;18(1):1–9.CrossRef
75.
go back to reference Alam M, Nandi S. Current drug design strategies for fighting against swine influenza. Curr Drug Therapy. 2017;12(2):83–96.CrossRef Alam M, Nandi S. Current drug design strategies for fighting against swine influenza. Curr Drug Therapy. 2017;12(2):83–96.CrossRef
77.
go back to reference Agban Y, Lian J, Prabakar S, Seyfoddin A, Rupenthal ID. Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride. Int J Pharm. 2016;501(1–2):96–101.PubMedCrossRef Agban Y, Lian J, Prabakar S, Seyfoddin A, Rupenthal ID. Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride. Int J Pharm. 2016;501(1–2):96–101.PubMedCrossRef
78.
go back to reference Iacobuzio-Donahue CA, Lee EL, Abraham SC, Yardley JH, Wu T-T. Colchicine toxicity: distinct morphologic findings in gastrointestinal biopsies. Am J Surg Pathol. 2001;25(8):1067–73.PubMedCrossRef Iacobuzio-Donahue CA, Lee EL, Abraham SC, Yardley JH, Wu T-T. Colchicine toxicity: distinct morphologic findings in gastrointestinal biopsies. Am J Surg Pathol. 2001;25(8):1067–73.PubMedCrossRef
80.
go back to reference McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza virus neuraminidase structure and functions. Front Microbiol. 2019;10:39.PubMedPubMedCentralCrossRef McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza virus neuraminidase structure and functions. Front Microbiol. 2019;10:39.PubMedPubMedCentralCrossRef
81.
go back to reference Cross TA, Dong H, Sharma M, Busath DD, Zhou HX. M2 protein from influenza A: from multiple structures to biophysical and functional insights. Curr Opin Virol. 2012;2(2):128–33.PubMedPubMedCentralCrossRef Cross TA, Dong H, Sharma M, Busath DD, Zhou HX. M2 protein from influenza A: from multiple structures to biophysical and functional insights. Curr Opin Virol. 2012;2(2):128–33.PubMedPubMedCentralCrossRef
Metadata
Title
Anti-rheumatic colchicine phytochemical exhibits potent antiviral activities against avian and seasonal Influenza A viruses (IAVs) via targeting different stages of IAV replication cycle
Authors
Akram Hegazy
Raya Soltane
Ahlam Alasiri
Islam Mostafa
Ahmed M. Metwaly
Ibrahim H. Eissa
Sara H. Mahmoud
Abdou Kamal Allayeh
Noura M. Abo Shama
Ahmed A. Khalil
Ramya S. Barre
Assem Mohamed El-Shazly
Mohamed A. Ali
Luis Martinez-Sobrido
Ahmed Mostafa
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04303-2

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue