Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Acarbose | Research

Synergistic effect of potential alpha-amylase inhibitors from Egyptian propolis with acarbose using in silico and in vitro combination analysis

Authors: Ahmed A. Nada, Aly M. Metwally, Aya M. Asaad, Ismail Celik, Reham S. Ibrahim, Safa M. Shams Eldin

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Background

Type 2 Diabetes mellitus (DM) is an affliction impacting the quality of life of millions of people worldwide. An approach used in the management of Type 2 DM involves the use of the carbohydrate-hydrolyzing enzyme inhibitor, acarbose. Although acarbose has long been the go-to drug in this key approach, it has become apparent that its side effects negatively impact patient adherence and subsequently, therapeutic outcomes. Similar to acarbose in its mechanism of action, bee propolis, a unique natural adhesive biomass consisting of biologically active metabolites, has been found to have antidiabetic potential through its inhibition of α-amylase. To minimize the need for ultimately novel agents while simultaneously aiming to decrease the side effects of acarbose and enhance its efficacy, combination drug therapy has become a promising pharmacotherapeutic strategy and a focal point of this study.

Methods

Computer-aided molecular docking and molecular dynamics (MD) simulations accompanied by in vitro testing were used to mine novel, pharmacologically active chemical entities from Egyptian propolis to combat Type 2 DM. Glide docking was utilized for a structure-based virtual screening of the largest in-house library of Egyptian propolis metabolites gathered from literature, in addition to GC–MS analysis of the propolis sample under investigation. Thereafter, combination analysis by means of fixed-ratio combinations of acarbose with propolis and the top chosen propolis-derived phytoligand was implemented.

Results

Aucubin, identified for the first time in propolis worldwide and kaempferol were the most promising virtual hits. Subsequent in vitro α-amylase inhibitory assay demonstrated the ability of these hits to significantly inhibit the enzyme in a dose-dependent manner with an IC50 of 2.37 ± 0.02 mM and 4.84 ± 0.14 mM, respectively. The binary combination of acarbose with each of propolis and kaempferol displayed maximal synergy at lower effect levels. Molecular docking and MD simulations revealed a cooperative binding mode between kaempferol and acarbose within the active site.

Conclusion

The suggested strategy seems imperative to ensure a steady supply of new therapeutic entities sourced from Egyptian propolis to regress the development of DM. Further pharmacological in vivo investigations are required to confirm the potent antidiabetic potential of the studied combination.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization (WHO). Diabetes. 2022. World Health Organization (WHO). Diabetes. 2022.
2.
go back to reference DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care. 1992;15:318–68.PubMedCrossRef DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care. 1992;15:318–68.PubMedCrossRef
3.
go back to reference Sarwar N, Gao P, Seshasai SRK, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet (London, England). 2010;375:2215–22.PubMedCrossRef Sarwar N, Gao P, Seshasai SRK, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet (London, England). 2010;375:2215–22.PubMedCrossRef
4.
go back to reference Engerman R, Bloodworth JMB Jr, Nelson S. Relationship of microvascular disease in diabetes to metabolic control. Diabetes. 1977;26:760–9.PubMedCrossRef Engerman R, Bloodworth JMB Jr, Nelson S. Relationship of microvascular disease in diabetes to metabolic control. Diabetes. 1977;26:760–9.PubMedCrossRef
5.
go back to reference Kameswararao B, Kesavulu MM, Apparao C. Evaluation of antidiabetic effect of Momordica cymbalaria fruit in alloxan-diabetic rats. Fitoterapia. 2003;74:7–13.PubMedCrossRef Kameswararao B, Kesavulu MM, Apparao C. Evaluation of antidiabetic effect of Momordica cymbalaria fruit in alloxan-diabetic rats. Fitoterapia. 2003;74:7–13.PubMedCrossRef
6.
go back to reference Eichler HG, Korn A, Gasic S, Pirson W, Businger J. The effect of a new specific α-amylase inhibitor on post-prandial glucose and insulin excursions in normal subjects and Type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1984;26:278–81.PubMedCrossRef Eichler HG, Korn A, Gasic S, Pirson W, Businger J. The effect of a new specific α-amylase inhibitor on post-prandial glucose and insulin excursions in normal subjects and Type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1984;26:278–81.PubMedCrossRef
7.
go back to reference Kaczmarek MJ, Rosenmund H. The action of human pancreatic and salivary isoamylases on starch and glycogen. Clin Chim Acta. 1977;79:69–73.PubMedCrossRef Kaczmarek MJ, Rosenmund H. The action of human pancreatic and salivary isoamylases on starch and glycogen. Clin Chim Acta. 1977;79:69–73.PubMedCrossRef
8.
go back to reference Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, et al. American association of clinical endocrinology clinical practice guideline: developing a diabetes mellitus comprehensive care plan—2022 update. Endocr Pract. 2022;28:923–1049.PubMedPubMedCentralCrossRef Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, et al. American association of clinical endocrinology clinical practice guideline: developing a diabetes mellitus comprehensive care plan—2022 update. Endocr Pract. 2022;28:923–1049.PubMedPubMedCentralCrossRef
9.
go back to reference International Diabetes Federation. Recommendations for Managing Type 2 diabetes in Primary Care. 2017. International Diabetes Federation. Recommendations for Managing Type 2 diabetes in Primary Care. 2017.
10.
go back to reference Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359:2072–7.PubMedCrossRef Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359:2072–7.PubMedCrossRef
11.
go back to reference Bayer HealthCare Pharmaceuticals Inc. Precose® Label. 2011. Bayer HealthCare Pharmaceuticals Inc. Precose® Label. 2011.
12.
go back to reference Thakkar S, Li T, Liu Z, Wu L, Roberts R, Tong W. Drug-induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity. Drug Discov Today. 2020;25:201–8.PubMedCrossRef Thakkar S, Li T, Liu Z, Wu L, Roberts R, Tong W. Drug-induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity. Drug Discov Today. 2020;25:201–8.PubMedCrossRef
13.
go back to reference Tong W. Drug-Induced Liver Injury Severity and Toxicity (DILIst) Dataset. 2023. Tong W. Drug-Induced Liver Injury Severity and Toxicity (DILIst) Dataset. 2023.
14.
15.
go back to reference Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev. 2017;2017:1259510.PubMedPubMedCentralCrossRef Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev. 2017;2017:1259510.PubMedPubMedCentralCrossRef
16.
go back to reference Nada AA, Nour IH, Metwally AM, Asaad AM, Shams Eldin SM, Ibrahim RS. An integrated strategy for chemical, biological and palynological standardization of bee propolis. Microchem J. 2022;182:107923.CrossRef Nada AA, Nour IH, Metwally AM, Asaad AM, Shams Eldin SM, Ibrahim RS. An integrated strategy for chemical, biological and palynological standardization of bee propolis. Microchem J. 2022;182:107923.CrossRef
17.
go back to reference Marcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie. 1995;26:83–99.CrossRef Marcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie. 1995;26:83–99.CrossRef
18.
go back to reference Bankova V, Boudourova-Krasteva G, Popov S, Sforcin MJ, Cunha Funari SR. Seasonal variations of the chemical composition of Brazilian propolis. Apidologie. 1998;29:361–7.CrossRef Bankova V, Boudourova-Krasteva G, Popov S, Sforcin MJ, Cunha Funari SR. Seasonal variations of the chemical composition of Brazilian propolis. Apidologie. 1998;29:361–7.CrossRef
20.
go back to reference Dobrowolski JW, Vohora SB, Sharma K, Shah SA, Naqvi SAH, Dandiya PC. Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products. J Ethnopharmacol. 1991;35:77–82.PubMedCrossRef Dobrowolski JW, Vohora SB, Sharma K, Shah SA, Naqvi SAH, Dandiya PC. Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products. J Ethnopharmacol. 1991;35:77–82.PubMedCrossRef
21.
go back to reference Ripari N, Sartori AA, da Silva HM, Conte FL, Tasca KI, Santiago KB, et al. Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment. J Pharm Pharmacol. 2021;73:281–99.PubMedCrossRef Ripari N, Sartori AA, da Silva HM, Conte FL, Tasca KI, Santiago KB, et al. Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment. J Pharm Pharmacol. 2021;73:281–99.PubMedCrossRef
22.
go back to reference Ibrahim RS, El-Banna AA. Network pharmacology-based analysis for unraveling potential cancer-related molecular targets of Egyptian propolis phytoconstituents accompanied with molecular docking and in vitro studies. RSC Adv. 2021;11:11610–26.PubMedPubMedCentralCrossRef Ibrahim RS, El-Banna AA. Network pharmacology-based analysis for unraveling potential cancer-related molecular targets of Egyptian propolis phytoconstituents accompanied with molecular docking and in vitro studies. RSC Adv. 2021;11:11610–26.PubMedPubMedCentralCrossRef
23.
go back to reference Kumazawa S, Hamasaka T, Nakayama T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004;84:329–39.CrossRef Kumazawa S, Hamasaka T, Nakayama T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004;84:329–39.CrossRef
24.
go back to reference El Adaouia TR, Djebli N, Chenini H, Sahin H, Kolayli S. In vivo and in vitro anti-diabetic activity of ethanolic propolis extract. J Food Biochem. 2020;44:e13267. El Adaouia TR, Djebli N, Chenini H, Sahin H, Kolayli S. In vivo and in vitro anti-diabetic activity of ethanolic propolis extract. J Food Biochem. 2020;44:e13267.
25.
go back to reference Wu Y-W, Sun S-Q, Zhao J, Li Y, Zhou Q. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy. J Mol Struct. 2008;883:48–54. Wu Y-W, Sun S-Q, Zhao J, Li Y, Zhou Q. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy. J Mol Struct. 2008;883:48–54.
26.
go back to reference Papotti G, Bertelli D, Plessi M, Rossi MC. Use of HR-NMR to classify propolis obtained using different harvesting methods. Int J Food Sci Technol. 2010;45:1610–8.CrossRef Papotti G, Bertelli D, Plessi M, Rossi MC. Use of HR-NMR to classify propolis obtained using different harvesting methods. Int J Food Sci Technol. 2010;45:1610–8.CrossRef
27.
go back to reference Tomazzoli MM, Pai Neto RD, Moresco R, Westphal L, Zeggio ARS, Specht L, et al. Discrimination of Brazilian propolis according to the seasoning using chemometrics and machine learning based on UV-Vis scanning data. J Integ Bioinform. 2015;12:15–26.CrossRef Tomazzoli MM, Pai Neto RD, Moresco R, Westphal L, Zeggio ARS, Specht L, et al. Discrimination of Brazilian propolis according to the seasoning using chemometrics and machine learning based on UV-Vis scanning data. J Integ Bioinform. 2015;12:15–26.CrossRef
28.
go back to reference Bruschi ML, Franco SL, Gremião MPD. Application of an HPLC method for analysis of propolis extract. J Liq Chromatogr Relat Technol. 2003;26:2399–409.CrossRef Bruschi ML, Franco SL, Gremião MPD. Application of an HPLC method for analysis of propolis extract. J Liq Chromatogr Relat Technol. 2003;26:2399–409.CrossRef
29.
go back to reference Kasote D, Ahmad A, Chen W, Combrinck S, Viljoen A. HPTLC-MS as an efficient hyphenated technique for the rapid identification of antimicrobial compounds from propolis. Phytochem Lett. 2015;11:326–31.CrossRef Kasote D, Ahmad A, Chen W, Combrinck S, Viljoen A. HPTLC-MS as an efficient hyphenated technique for the rapid identification of antimicrobial compounds from propolis. Phytochem Lett. 2015;11:326–31.CrossRef
30.
go back to reference Hegazi AG, Abd El Hady FK, Abd Allah FAM. Chemical composition and antimicrobial activity of European Propolis. Zeitschrift für Naturforschung C. 2000;55:70–5.CrossRef Hegazi AG, Abd El Hady FK, Abd Allah FAM. Chemical composition and antimicrobial activity of European Propolis. Zeitschrift für Naturforschung C. 2000;55:70–5.CrossRef
31.
go back to reference Greenaway W, May J, Scaysbrook T, Whatley FR. Identification by gas chromatography-mass spectrometry of 150 compounds in propolis. Zeitschrift für Naturforschung C. 1991;46:111–21.CrossRef Greenaway W, May J, Scaysbrook T, Whatley FR. Identification by gas chromatography-mass spectrometry of 150 compounds in propolis. Zeitschrift für Naturforschung C. 1991;46:111–21.CrossRef
32.
go back to reference Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621 LP – 681.CrossRef Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621 LP – 681.CrossRef
33.
go back to reference Popova M, Trusheva B, Antonova D, Cutajar S, Mifsud D, Farrugia C, et al. The specific chemical profile of Mediterranean propolis from Malta. Food Chem. 2011;126:1431–5.CrossRef Popova M, Trusheva B, Antonova D, Cutajar S, Mifsud D, Farrugia C, et al. The specific chemical profile of Mediterranean propolis from Malta. Food Chem. 2011;126:1431–5.CrossRef
34.
go back to reference Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.PubMedPubMedCentralCrossRef Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.PubMedPubMedCentralCrossRef
35.
go back to reference Liu Y, Yang X, Gan J, Chen S, Xiao Z-X, Cao Y. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022;50:W159–64.PubMedPubMedCentralCrossRef Liu Y, Yang X, Gan J, Chen S, Xiao Z-X, Cao Y. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022;50:W159–64.PubMedPubMedCentralCrossRef
36.
go back to reference Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82.PubMedCrossRef Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82.PubMedCrossRef
37.
go back to reference Adisakwattana S, Chantarasinlapin P, Thammarat H, Yibchok-Anun S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase. J Enzyme Inhib Med Chem. 2009;24:1194–200.PubMedCrossRef Adisakwattana S, Chantarasinlapin P, Thammarat H, Yibchok-Anun S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase. J Enzyme Inhib Med Chem. 2009;24:1194–200.PubMedCrossRef
38.
go back to reference Chou T-C, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.PubMedCrossRef Chou T-C, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.PubMedCrossRef
39.
go back to reference Zhao L, Wientjes MG, Au JLS. Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res. 2004;10:7994–8004.PubMedCrossRef Zhao L, Wientjes MG, Au JLS. Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res. 2004;10:7994–8004.PubMedCrossRef
40.
go back to reference Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.PubMedCrossRef Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.PubMedCrossRef
41.
go back to reference Sonja K, Silva PH, Michael W. Combinations of alkaloids affecting different molecular targets with the saponin digitonin can synergistically enhance trypanocidal activity against trypanosoma brucei brucei. Antimicrob Agents Chemother. 2015;59:7011–7.CrossRef Sonja K, Silva PH, Michael W. Combinations of alkaloids affecting different molecular targets with the saponin digitonin can synergistically enhance trypanocidal activity against trypanosoma brucei brucei. Antimicrob Agents Chemother. 2015;59:7011–7.CrossRef
42.
go back to reference Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.CrossRef Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.CrossRef
43.
go back to reference Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J Comput Chem. 2008;29:1859–65.PubMedCrossRef Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J Comput Chem. 2008;29:1859–65.PubMedCrossRef
44.
go back to reference Lee J, Hitzenberger M, Rieger M, Kern NR, Zacharias M, Im W. CHARMM-GUI supports the Amber force fields. J Chem Phys. 2020;153:35103.CrossRef Lee J, Hitzenberger M, Rieger M, Kern NR, Zacharias M, Im W. CHARMM-GUI supports the Amber force fields. J Chem Phys. 2020;153:35103.CrossRef
45.
go back to reference Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput. 2021;17:6281–91.PubMedCrossRef Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput. 2021;17:6281–91.PubMedCrossRef
46.
go back to reference Hegazi A, Abd El Hady F. egyptian propolis: 1-antimicrobial activity and chemical composition of upper Egypt Propolis. Z Naturforsch C. 2001;56:82–8.PubMedCrossRef Hegazi A, Abd El Hady F. egyptian propolis: 1-antimicrobial activity and chemical composition of upper Egypt Propolis. Z Naturforsch C. 2001;56:82–8.PubMedCrossRef
47.
go back to reference Christov R, Bankova V, Hegazi A, El HFA, Popov S. Chemical composition of Egyptian Propolis. Zeitschrift für Naturforsch C. 1998;53:197–200.CrossRef Christov R, Bankova V, Hegazi A, El HFA, Popov S. Chemical composition of Egyptian Propolis. Zeitschrift für Naturforsch C. 1998;53:197–200.CrossRef
48.
go back to reference Hegazi AG, Farghaly AA, Abd El Hady FK. Antiviral activity and chemical composition of European and Egyptian propolis. In: Egyptian Journal of Veterinary Science. 2004. p. 11–22. Hegazi AG, Farghaly AA, Abd El Hady FK. Antiviral activity and chemical composition of European and Egyptian propolis. In: Egyptian Journal of Veterinary Science. 2004. p. 11–22.
49.
go back to reference Atta A, Mouneir S, Nasr S, Sedky D, Mohamed AM, Atta S, et al. Phytochemical studies and anti-ulcerative colitis effect of Moringa oleifera seeds and Egyptian propolis methanol extracts in a rat model. Asian Pac J Trop Biomed. 2019;9:98–108.CrossRef Atta A, Mouneir S, Nasr S, Sedky D, Mohamed AM, Atta S, et al. Phytochemical studies and anti-ulcerative colitis effect of Moringa oleifera seeds and Egyptian propolis methanol extracts in a rat model. Asian Pac J Trop Biomed. 2019;9:98–108.CrossRef
50.
go back to reference Abd El Hady F, Hegazi A. Egyptian propolis: 2. chemical composition, antiviral and antimicrobial activities of east nile delta propolis. Z Naturforsch C. 2002;57:386–94.PubMedCrossRef Abd El Hady F, Hegazi A. Egyptian propolis: 2. chemical composition, antiviral and antimicrobial activities of east nile delta propolis. Z Naturforsch C. 2002;57:386–94.PubMedCrossRef
51.
go back to reference Said S, Khan S, Ahmad I, Ali H. Chemical composition of Egyptian and UAE propolis. Pak J Pharm Sci. 2006;19:58–61.PubMed Said S, Khan S, Ahmad I, Ali H. Chemical composition of Egyptian and UAE propolis. Pak J Pharm Sci. 2006;19:58–61.PubMed
52.
go back to reference Hegazi A, Abd El Hady F, Shalaby H. Inhibitory effect of Egyptian propolis on Fasciola gigantica eggs with reference to its effect on Clostridium oedematiens and correlation to chemical composition. Pak J Biol Sci. 2007;10:3295–305.PubMedCrossRef Hegazi A, Abd El Hady F, Shalaby H. Inhibitory effect of Egyptian propolis on Fasciola gigantica eggs with reference to its effect on Clostridium oedematiens and correlation to chemical composition. Pak J Biol Sci. 2007;10:3295–305.PubMedCrossRef
53.
go back to reference Abd El Hady F, Hegazi A, Wollenweber E. Effect of Egyptian propolis on the susceptibility of LDL to oxidative modification and its antiviral activity with special emphasis on chemical composition. Z Naturforsch C. 2007;62:645–55.PubMedCrossRef Abd El Hady F, Hegazi A, Wollenweber E. Effect of Egyptian propolis on the susceptibility of LDL to oxidative modification and its antiviral activity with special emphasis on chemical composition. Z Naturforsch C. 2007;62:645–55.PubMedCrossRef
54.
go back to reference Gumgumjee NMM. Chemical Composition and Antibacterial Activity of Honey Beeglue (Propolis) Collected From China, Egypt, Iran, and Saudi Arabia. Egypt J Exp Biol. 2010;6:129–36. Gumgumjee NMM. Chemical Composition and Antibacterial Activity of Honey Beeglue (Propolis) Collected From China, Egypt, Iran, and Saudi Arabia. Egypt J Exp Biol. 2010;6:129–36.
55.
go back to reference Abd El Hady F, Shaker K, Imhoff J, Zinecker H, Salah N, Ibrahim A. Bioactive metabolites from propolis inhibit superoxide anion radical, acetylcholinesterase and phosphodiesterase (PDE4). Int J Pharm Sci Rev Res. 2013;21:338–44. Abd El Hady F, Shaker K, Imhoff J, Zinecker H, Salah N, Ibrahim A. Bioactive metabolites from propolis inhibit superoxide anion radical, acetylcholinesterase and phosphodiesterase (PDE4). Int J Pharm Sci Rev Res. 2013;21:338–44.
56.
go back to reference Kamel AA, Moustafa A, Nafea E. Propolis as a natural antibiotic to control American foulbrood disease in honey bee colonies. Afr J Agric Res. 2013;8:3047–62. Kamel AA, Moustafa A, Nafea E. Propolis as a natural antibiotic to control American foulbrood disease in honey bee colonies. Afr J Agric Res. 2013;8:3047–62.
57.
go back to reference Abd El Hady F, Souleman AMA, El-Shahid ZA. Antiacetylcholinesterase and cytotoxic activities of Egyptian propolis with correlation to its GC/MS and HPLC analysis. Int J Pharm Sci Rev Res. 2015;34:32–42. Abd El Hady F, Souleman AMA, El-Shahid ZA. Antiacetylcholinesterase and cytotoxic activities of Egyptian propolis with correlation to its GC/MS and HPLC analysis. Int J Pharm Sci Rev Res. 2015;34:32–42.
58.
go back to reference Abd El Hady F, Souleman AMA, Hawary SE, Salah N, El-Shahid ZA. Egyptian propolis bioassay guided fractionation and GC/MS HPLC analysis of highly anti-acetylcholinesterase sub-fractions. Int J Pharm Sci Rev Res. 2015;35:53–62. Abd El Hady F, Souleman AMA, Hawary SE, Salah N, El-Shahid ZA. Egyptian propolis bioassay guided fractionation and GC/MS HPLC analysis of highly anti-acetylcholinesterase sub-fractions. Int J Pharm Sci Rev Res. 2015;35:53–62.
59.
go back to reference Shawky E, Ibrahim RS. Bioprofiling for the quality control of Egyptian propolis using an integrated NIR-HPTLC-image analysis strategy. J Chromatogr B. 2018;1095:75–86.CrossRef Shawky E, Ibrahim RS. Bioprofiling for the quality control of Egyptian propolis using an integrated NIR-HPTLC-image analysis strategy. J Chromatogr B. 2018;1095:75–86.CrossRef
60.
go back to reference Abd El Hady F, Souleman AMA, Hawary S, Salah N, El-Shahid ZA. GC/MS and HPLC analysis of alpha-glucosidase inhibitor′s sub-fractions from Egyptian propolis. Int J Pharm Sci Rev Res. 2016;38:120–9. Abd El Hady F, Souleman AMA, Hawary S, Salah N, El-Shahid ZA. GC/MS and HPLC analysis of alpha-glucosidase inhibitor′s sub-fractions from Egyptian propolis. Int J Pharm Sci Rev Res. 2016;38:120–9.
61.
go back to reference Mohammadzadeh S, Shariatpanahi M, Hamedi M, Ahmadkhaniha R, Samadi N, Ostad SN. Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chem. 2007;103:1097–103.CrossRef Mohammadzadeh S, Shariatpanahi M, Hamedi M, Ahmadkhaniha R, Samadi N, Ostad SN. Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chem. 2007;103:1097–103.CrossRef
62.
go back to reference Ezzat S, Khattaby A, Abdelmageed S, Elaal M. Cytotoxicity, antioxidant, anti-inflammatory activity, and GC-MS analysis of Egyptian propolis. Comp Clin Path. 2019;28:1589–98.CrossRef Ezzat S, Khattaby A, Abdelmageed S, Elaal M. Cytotoxicity, antioxidant, anti-inflammatory activity, and GC-MS analysis of Egyptian propolis. Comp Clin Path. 2019;28:1589–98.CrossRef
63.
go back to reference Hegazi A, Abd El Hady F. Egyptian propolis: 3. antioxidant, antimicrobial activities and chemical composition of propolis from reclaimed lands. Z Naturforsch C. 2002;57:395–402.PubMedCrossRef Hegazi A, Abd El Hady F. Egyptian propolis: 3. antioxidant, antimicrobial activities and chemical composition of propolis from reclaimed lands. Z Naturforsch C. 2002;57:395–402.PubMedCrossRef
64.
go back to reference Abozid MM, Abd A, Ahmed E-K. Chemical composition of Egyptian and commercial propolis and its effects on liver function and lipid profiles in albino rats. J Biol Chem Env Sci. 2013;8:323–40. Abozid MM, Abd A, Ahmed E-K. Chemical composition of Egyptian and commercial propolis and its effects on liver function and lipid profiles in albino rats. J Biol Chem Env Sci. 2013;8:323–40.
65.
go back to reference Morsy AS, Soltan YA, Sallam SMA, Kreuzer M, Alencar SM, Abdalla AL. Comparison of the in vitro efficiency of supplementary bee propolis extracts of different origin in enhancing the ruminal degradability of organic matter and mitigating the formation of methane. Anim Feed Sci Technol. 2015;199:51–60. Morsy AS, Soltan YA, Sallam SMA, Kreuzer M, Alencar SM, Abdalla AL. Comparison of the in vitro efficiency of supplementary bee propolis extracts of different origin in enhancing the ruminal degradability of organic matter and mitigating the formation of methane. Anim Feed Sci Technol. 2015;199:51–60.
66.
go back to reference El-Sohaimy S, Masry S. Phenolic content, antioxidant and antimicrobial activities of Egyptian and Chinese Propolis. Am J Agric Environ Sci. 2014;14:1116–24. El-Sohaimy S, Masry S. Phenolic content, antioxidant and antimicrobial activities of Egyptian and Chinese Propolis. Am J Agric Environ Sci. 2014;14:1116–24.
67.
68.
go back to reference Shoichet BK, McGovern SL, Wei B, Irwin JJ. Hits, leads and artifacts from virtual and high throughput screening. Molecular Informatics: Confronting Complexity. Proc Beilstein-Institut Work May 13th - 16th, Bozen. 2002;13:1. Shoichet BK, McGovern SL, Wei B, Irwin JJ. Hits, leads and artifacts from virtual and high throughput screening. Molecular Informatics: Confronting Complexity. Proc Beilstein-Institut Work May 13th - 16th, Bozen. 2002;13:1.
69.
go back to reference Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol. 2008;153(Suppl):S7-26.PubMed Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol. 2008;153(Suppl):S7-26.PubMed
70.
go back to reference Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161:269–88.PubMedCrossRef Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161:269–88.PubMedCrossRef
71.
go back to reference Mcconkey B, Sobolev V, Edelman M. The performance of current methods in ligand-protein docking. Curr Sci. 2002;83:845–56. Mcconkey B, Sobolev V, Edelman M. The performance of current methods in ligand-protein docking. Curr Sci. 2002;83:845–56.
72.
go back to reference Singer JA, Purcell WP. Relationships among current quantitative structure-activity models. J Med Chem. 1967;10:1000–2.PubMedCrossRef Singer JA, Purcell WP. Relationships among current quantitative structure-activity models. J Med Chem. 1967;10:1000–2.PubMedCrossRef
73.
go back to reference Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, et al. High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. PLOS Comput Biol. 2009;5:e1000528.PubMedPubMedCentralCrossRef Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, et al. High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. PLOS Comput Biol. 2009;5:e1000528.PubMedPubMedCentralCrossRef
74.
go back to reference Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem. 2004;47:1750–9.PubMedCrossRef Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem. 2004;47:1750–9.PubMedCrossRef
76.
go back to reference Mohamed GA, Omar AM, El-Araby ME, Mass S, Ibrahim SRM. Assessments of alpha-amylase inhibitory potential of tagetes flavonoids through in vitro, molecular docking, and molecular dynamics simulation studies. Int J Mol Sci. 2023;24:10195.PubMedPubMedCentralCrossRef Mohamed GA, Omar AM, El-Araby ME, Mass S, Ibrahim SRM. Assessments of alpha-amylase inhibitory potential of tagetes flavonoids through in vitro, molecular docking, and molecular dynamics simulation studies. Int J Mol Sci. 2023;24:10195.PubMedPubMedCentralCrossRef
77.
go back to reference Vo Van L, Pham EC, Nguyen CV, Duong NTN, Vi Le Thi T, Truong TN. In vitro and in vivo antidiabetic activity, isolation of flavonoids, and in silico molecular docking of stem extract of Merremia tridentata (L.). Biomed Pharmacother. 2022;146:112611.PubMedCrossRef Vo Van L, Pham EC, Nguyen CV, Duong NTN, Vi Le Thi T, Truong TN. In vitro and in vivo antidiabetic activity, isolation of flavonoids, and in silico molecular docking of stem extract of Merremia tridentata (L.). Biomed Pharmacother. 2022;146:112611.PubMedCrossRef
78.
go back to reference Lee J-Y, Jeong K-W, Kim Y-M. Epigallocatechin 3-gallate binds to human salivary α-amylase with complex hydrogen bonding interactions. Bull Korean Chem Soc. 2011;32:2222–6.CrossRef Lee J-Y, Jeong K-W, Kim Y-M. Epigallocatechin 3-gallate binds to human salivary α-amylase with complex hydrogen bonding interactions. Bull Korean Chem Soc. 2011;32:2222–6.CrossRef
79.
go back to reference Brayer GD, Luo Y, Withers SG. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995;4:1730–42.PubMedPubMedCentralCrossRef Brayer GD, Luo Y, Withers SG. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995;4:1730–42.PubMedPubMedCentralCrossRef
80.
go back to reference Kikiowo B, Ogunleye JA, Iwaloye O, Ijatuyi TT. Therapeutic potential of Chromolaena odorata phyto-constituents against human pancreatic α-amylase. J Biomol Struct Dyn. 2022;40:1801–12.PubMedCrossRef Kikiowo B, Ogunleye JA, Iwaloye O, Ijatuyi TT. Therapeutic potential of Chromolaena odorata phyto-constituents against human pancreatic α-amylase. J Biomol Struct Dyn. 2022;40:1801–12.PubMedCrossRef
81.
go back to reference Jin L, Xue H-Y, Jin L-J, Li S-Y, Xu Y-P. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur J Pharmacol. 2008;582:162–7.PubMedCrossRef Jin L, Xue H-Y, Jin L-J, Li S-Y, Xu Y-P. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur J Pharmacol. 2008;582:162–7.PubMedCrossRef
82.
go back to reference Zabala MJB, Lagurin LG, Dayrit FM. Untargeted bioassay strategy for medicinal plants: in vitro antidiabetic activity and 13C NMR profiling of extracts from vitex negundo L. Med Aromat plants. 2018;7:1–10.CrossRef Zabala MJB, Lagurin LG, Dayrit FM. Untargeted bioassay strategy for medicinal plants: in vitro antidiabetic activity and 13C NMR profiling of extracts from vitex negundo L. Med Aromat plants. 2018;7:1–10.CrossRef
83.
go back to reference Zeng X, Guo F, Ouyang D. A review of the pharmacology and toxicology of aucubin. Fitoterapia. 2020;140:104443.PubMedCrossRef Zeng X, Guo F, Ouyang D. A review of the pharmacology and toxicology of aucubin. Fitoterapia. 2020;140:104443.PubMedCrossRef
84.
go back to reference Wang H, Du Y-J, Song H-C. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem. 2010;123:6–13.CrossRef Wang H, Du Y-J, Song H-C. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem. 2010;123:6–13.CrossRef
85.
go back to reference Shawky E, Sobhy AA, Ghareeb DA, Shams Eldin SM, Selim DA. Comparative metabolomics analysis of bioactive constituents of the leaves of different Trigonella species: Correlation study to α-amylase and α-glycosidase inhibitory effects. Ind Crops Prod. 2022;182:114947.CrossRef Shawky E, Sobhy AA, Ghareeb DA, Shams Eldin SM, Selim DA. Comparative metabolomics analysis of bioactive constituents of the leaves of different Trigonella species: Correlation study to α-amylase and α-glycosidase inhibitory effects. Ind Crops Prod. 2022;182:114947.CrossRef
86.
go back to reference Paşayeva L, Fatullayev H, Celik I, Unal G, Bozkurt NM, Tugay O, et al. Evaluation of the Chemical Composition, Antioxidant and Antidiabetic Activity of Rhaponticoides iconiensis Flowers: Effects on Key Enzymes Linked to Type 2 Diabetes In Vitro, In Silico and on Alloxan-Induced Diabetic Rats In Vivo. Antioxidants. 2022;11(11):2284. Paşayeva L, Fatullayev H, Celik I, Unal G, Bozkurt NM, Tugay O, et al. Evaluation of the Chemical Composition, Antioxidant and Antidiabetic Activity of Rhaponticoides iconiensis Flowers: Effects on Key Enzymes Linked to Type 2 Diabetes In Vitro, In Silico and on Alloxan-Induced Diabetic Rats In Vivo. Antioxidants. 2022;11(11):2284.
87.
go back to reference Ghallab DS, Shawky E, Metwally AM, Celik I, Ibrahim RS, Mohyeldin MM. Integrated in silico – in vitro strategy for the discovery of potential xanthine oxidase inhibitors from Egyptian propolis and their synergistic effect with allopurinol and febuxostat. RSC Adv. 2022;12:2843–72.PubMedPubMedCentralCrossRef Ghallab DS, Shawky E, Metwally AM, Celik I, Ibrahim RS, Mohyeldin MM. Integrated in silico – in vitro strategy for the discovery of potential xanthine oxidase inhibitors from Egyptian propolis and their synergistic effect with allopurinol and febuxostat. RSC Adv. 2022;12:2843–72.PubMedPubMedCentralCrossRef
Metadata
Title
Synergistic effect of potential alpha-amylase inhibitors from Egyptian propolis with acarbose using in silico and in vitro combination analysis
Authors
Ahmed A. Nada
Aly M. Metwally
Aya M. Asaad
Ismail Celik
Reham S. Ibrahim
Safa M. Shams Eldin
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Acarbose
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-024-04348-x

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue