Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

ACE inhibitory peptides in standard and fermented deer velvet: an in silico and in vitro investigation

Authors: Stephen R. Haines, Mark J. McCann, Anita J. Grosvenor, Ancy Thomas, Alasdair Noble, Stefan Clerens

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

The use of deer velvet antler (DVA) as a potent traditional medicine ingredient goes back for over 2000 years in Asia. Increasingly, though, DVA is being included as a high protein functional food ingredient in convenient, ready to consume products in Korea and China. As such, it is a potential source of endogenous bioactive peptides and of ‘cryptides’, i.e. bioactive peptides enzymatically released by endogenous proteases, by processing and/or by gastrointestinal digestion. Fermentation is an example of a processing step known to release bioactive peptides from food proteins. In this study, we aimed to identify in silico bioactive peptides and cryptides in DVA, before and after fermentation, and subsequently to validate the major predicted bioactivity by in vitro analysis.

Methods

Peptides that were either free or located within proteins were identified in the DVA samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by database searching. Bioactive peptides and cryptides were identified in silico by sequence matching against a database of known bioactive peptides. Angiotensin-converting enzyme (ACE) inhibitory activity was measured by a colorimetric method.

Results

Three free bioactive peptides (LVVYPW, LVVYPWTQ and VVYPWTQ) were solely found in fermented DVA, the latter two of which are known ACE inhibitors. However matches to multiple ACE inhibitor cryptides were obtained within protein and peptide sequences of both unfermented and fermented DVA. In vitro analysis showed that the ACE inhibitory activity of DVA was more pronounced in the fermented sample, but both unfermented and fermented DVA had similar activity following release of cryptides by simulated gastrointestinal digestion.

Conclusions

DVA contains multiple ACE inhibitory peptide sequences that may be released by fermentation or following oral consumption, and which may provide a health benefit through positive effects on the cardiovascular system. The study illustrates the power of in silico combined with in vitro methods for analysis of the effects of processing on bioactive peptides in complex functional ingredients like DVA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang BX, Zhao XH, Qi SB, Kaneko S, Hattori M, Namba T, Nomura Y. Effects of repeated administration of deer antler extract on biochemical changes related to aging in senescence-accelerated mice. Chem Pharm Bull. 1988;36:2587–92.CrossRef Wang BX, Zhao XH, Qi SB, Kaneko S, Hattori M, Namba T, Nomura Y. Effects of repeated administration of deer antler extract on biochemical changes related to aging in senescence-accelerated mice. Chem Pharm Bull. 1988;36:2587–92.CrossRef
2.
go back to reference Dai T-Y, Wang C-H, Chen K-N, Huang IN, Hong W-S, Wang S-Y, Chen Y-P, Kuo C-Y, Chen M-J. The antiinfective effects of velvet antler of formosan sambar deer (Cervus unicolor swinhoei) on Staphylococcus aureus-infected mice. Evid Based Complement Alternat Med. 2011;2011:534069.CrossRef Dai T-Y, Wang C-H, Chen K-N, Huang IN, Hong W-S, Wang S-Y, Chen Y-P, Kuo C-Y, Chen M-J. The antiinfective effects of velvet antler of formosan sambar deer (Cervus unicolor swinhoei) on Staphylococcus aureus-infected mice. Evid Based Complement Alternat Med. 2011;2011:534069.CrossRef
3.
go back to reference Zhang ZQ, Wang Y, Zhang H, Zhang W, Zhang Y, Wang BX. Anti-inflammatory effects of pilose antler peptide. Acta Pharmacol Sin. 1994;15:282–4. Zhang ZQ, Wang Y, Zhang H, Zhang W, Zhang Y, Wang BX. Anti-inflammatory effects of pilose antler peptide. Acta Pharmacol Sin. 1994;15:282–4.
4.
go back to reference Hemmings SJ, Song X. The effects of elk velvet antler consumption on the Fischer 344 rat: protection against CCl4-induced liver injury. In: Suttie JM, Haines SR, Li C, editors. Advances in antler science and product technology. Queenstown: Velvet Antler New Zealand Limted (Wellington, NZ); 2004. p. 211–9. Hemmings SJ, Song X. The effects of elk velvet antler consumption on the Fischer 344 rat: protection against CCl4-induced liver injury. In: Suttie JM, Haines SR, Li C, editors. Advances in antler science and product technology. Queenstown: Velvet Antler New Zealand Limted (Wellington, NZ); 2004. p. 211–9.
5.
go back to reference Kim KW, Park SW. A study on the hemopoietic action of deer horn extract. Korean Biochem J. 1982;15:151–7. Kim KW, Park SW. A study on the hemopoietic action of deer horn extract. Korean Biochem J. 1982;15:151–7.
6.
go back to reference Weng L, Zhou QL, Wang LJ, Liu YQ, Wang Y, Wang Y, Wang BX. Velvet antler polypeptides promoted proliferation of epidermic cells and fibroblasts and skin wound healing. Acta Pharm Sin. 2001;36:817–20. Weng L, Zhou QL, Wang LJ, Liu YQ, Wang Y, Wang Y, Wang BX. Velvet antler polypeptides promoted proliferation of epidermic cells and fibroblasts and skin wound healing. Acta Pharm Sin. 2001;36:817–20.
7.
go back to reference Fraser A, Haines SR, Stuart EC, Scandlyn MJ, Alexander A, Somers-Edgar TJ, Rosengren RJ. Deer velvet supplementation decreases the grade and metastasis of azoxymethane-induced colon cancer in the male rat. Food Chem Toxicol. 2010;48:1288–92.CrossRef Fraser A, Haines SR, Stuart EC, Scandlyn MJ, Alexander A, Somers-Edgar TJ, Rosengren RJ. Deer velvet supplementation decreases the grade and metastasis of azoxymethane-induced colon cancer in the male rat. Food Chem Toxicol. 2010;48:1288–92.CrossRef
8.
go back to reference Gao L, Tao D, Shan Y, Liang Z, Zhang L, Huo Y, Zhang Y. HPLC-MS/MS shotgun proteomic research of deer antlers with multiparallel protein extraction methods. J Chromatogr B. 2010;878:3370–4.CrossRef Gao L, Tao D, Shan Y, Liang Z, Zhang L, Huo Y, Zhang Y. HPLC-MS/MS shotgun proteomic research of deer antlers with multiparallel protein extraction methods. J Chromatogr B. 2010;878:3370–4.CrossRef
9.
go back to reference Park HJ, Lee DH, Park SG, Lee SC, Cho S, Kim HK, Kim JJ, Bae H, Park BC. Proteome analysis of red deer antlers. Proteomics. 2004;4:3642–53.CrossRef Park HJ, Lee DH, Park SG, Lee SC, Cho S, Kim HK, Kim JJ, Bae H, Park BC. Proteome analysis of red deer antlers. Proteomics. 2004;4:3642–53.CrossRef
10.
go back to reference Sui Z, Yuan H, Liang Z, Zhao Q, Wu Q, Xia S, Zhang L, Huo Y, Zhang Y. An activity-maintaining sequential protein extraction method for bioactive assay and proteome analysis of velvet antlers. Talanta. 2013;107:189–94.CrossRef Sui Z, Yuan H, Liang Z, Zhao Q, Wu Q, Xia S, Zhang L, Huo Y, Zhang Y. An activity-maintaining sequential protein extraction method for bioactive assay and proteome analysis of velvet antlers. Talanta. 2013;107:189–94.CrossRef
11.
go back to reference Francis SM, Suttie JM. Detection of growth factors and proto-oncogene mRNA in the growing tip of red deer (Cervus elaphus) antler using reverse-transcriptase polymerase chain reaction (RT-PCR). J Exp Zool. 1998;281:36–42.CrossRef Francis SM, Suttie JM. Detection of growth factors and proto-oncogene mRNA in the growing tip of red deer (Cervus elaphus) antler using reverse-transcriptase polymerase chain reaction (RT-PCR). J Exp Zool. 1998;281:36–42.CrossRef
12.
go back to reference Zhang L-Z, Xin J-L, Zhang X-P, Fu Q, Zhang Y, Zhou Q-L. The anti-osteoporotic effect of velvet antler polypeptides from Cervus elaphus Linnaeus in ovariectomized rats. J Ethnopharmacol. 2013;150:181–6.CrossRef Zhang L-Z, Xin J-L, Zhang X-P, Fu Q, Zhang Y, Zhou Q-L. The anti-osteoporotic effect of velvet antler polypeptides from Cervus elaphus Linnaeus in ovariectomized rats. J Ethnopharmacol. 2013;150:181–6.CrossRef
13.
go back to reference Zha E, Li X, Li D, Guo X, Gao S, Yue X. Immunomodulatory effects of a 3.2 kDa polypeptide from velvet antler of Cervus nippon Temminck. Int Immunopharmacol. 2013;16:210–3.CrossRef Zha E, Li X, Li D, Guo X, Gao S, Yue X. Immunomodulatory effects of a 3.2 kDa polypeptide from velvet antler of Cervus nippon Temminck. Int Immunopharmacol. 2013;16:210–3.CrossRef
14.
go back to reference Minkiewicz P, Dziuba J, Michalska J. Bovine meat proteins as potential precursors of biologically active peptides - a computational study based on the BIOPEP database. Food Sci Technol Int. 2011;17:39–45.CrossRef Minkiewicz P, Dziuba J, Michalska J. Bovine meat proteins as potential precursors of biologically active peptides - a computational study based on the BIOPEP database. Food Sci Technol Int. 2011;17:39–45.CrossRef
15.
go back to reference Dziuba M, Dziuba B, Iwaniak A. Milk proteins as precursors of bioactive peptides. Acta Sci Pol Technol. 2009;8:71–90. Dziuba M, Dziuba B, Iwaniak A. Milk proteins as precursors of bioactive peptides. Acta Sci Pol Technol. 2009;8:71–90.
16.
go back to reference Iwaniak A, Dziuba J. Analysis of domains in selected plant and animal food proteins - precursors of biologically active peptides - in silico approach. Food Sci Technol Int. 2009;15:179–91.CrossRef Iwaniak A, Dziuba J. Analysis of domains in selected plant and animal food proteins - precursors of biologically active peptides - in silico approach. Food Sci Technol Int. 2009;15:179–91.CrossRef
17.
go back to reference Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M. BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int. 2008;91:965–80.PubMed Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M. BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int. 2008;91:965–80.PubMed
18.
go back to reference Lee Y-S. Antler herb medicine fermented with chicken gizzard and a method for preparation thereof. US Patent No. 6,482,443. USPTO; 2002. Lee Y-S. Antler herb medicine fermented with chicken gizzard and a method for preparation thereof. US Patent No. 6,482,443. USPTO; 2002.
19.
go back to reference Wessel D, Flügge UI. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984;138:141–3.CrossRef Wessel D, Flügge UI. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984;138:141–3.CrossRef
20.
go back to reference Wang W, Bringe NA, Berhow MA, De Mejia EG. β-Conglycinins among sources of bioactives in hydrolysates of different soybean varieties that inhibit leukemia cells in vitro. J Agric Food Chem. 2008;56:4012–20.CrossRef Wang W, Bringe NA, Berhow MA, De Mejia EG. β-Conglycinins among sources of bioactives in hydrolysates of different soybean varieties that inhibit leukemia cells in vitro. J Agric Food Chem. 2008;56:4012–20.CrossRef
21.
go back to reference Jimsheena VK, Gowda LR. Colorimetric, high-throughput assay for screening angiotensin I-converting enzyme inhibitors. Anal Chem. 2009;81:9388–94.CrossRef Jimsheena VK, Gowda LR. Colorimetric, high-throughput assay for screening angiotensin I-converting enzyme inhibitors. Anal Chem. 2009;81:9388–94.CrossRef
22.
go back to reference Liu F, Baggerman G, Schoofs L, Wets G. The construction of a bioactive peptide database in metazoa. J Proteome Res. 2008;7:4119–31.CrossRef Liu F, Baggerman G, Schoofs L, Wets G. The construction of a bioactive peptide database in metazoa. J Proteome Res. 2008;7:4119–31.CrossRef
23.
go back to reference Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2009;37:D933–D7.CrossRef Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2009;37:D933–D7.CrossRef
27.
go back to reference Petrov RV, Mikhailova AA, Fonina LA. Bone marrow immunoregulatory peptides (myelopeptides): isolation, structure, and functional activity. Biopolymers. 1997;43:139–46.CrossRef Petrov RV, Mikhailova AA, Fonina LA. Bone marrow immunoregulatory peptides (myelopeptides): isolation, structure, and functional activity. Biopolymers. 1997;43:139–46.CrossRef
28.
go back to reference Nyberg F, Sanderson K, Glamsta EL. The hemorphins: a new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers. 1997;43:147–56.CrossRef Nyberg F, Sanderson K, Glamsta EL. The hemorphins: a new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers. 1997;43:147–56.CrossRef
29.
go back to reference Byun HG, Kim SK. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J Biochem Mol Biol. 2002;35:239–43.PubMed Byun HG, Kim SK. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J Biochem Mol Biol. 2002;35:239–43.PubMed
30.
go back to reference Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract. 2006;60:1454–70.CrossRef Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract. 2006;60:1454–70.CrossRef
31.
go back to reference Scheen AJ. DPP-4 inhibitors in the management of type 2 diabetes: a critical review of head-to-head trials. Diabetes Metab. 2012;38:89–101.CrossRef Scheen AJ. DPP-4 inhibitors in the management of type 2 diabetes: a critical review of head-to-head trials. Diabetes Metab. 2012;38:89–101.CrossRef
32.
go back to reference Hayes M, Stanton C, Fitzgerald GF, Ross RP. Putting microbes to work: diary fermentation, cell factories and bioactive peptides. Part II: bioactive peptide functions. Biotechnol J. 2007;2:435–49.CrossRef Hayes M, Stanton C, Fitzgerald GF, Ross RP. Putting microbes to work: diary fermentation, cell factories and bioactive peptides. Part II: bioactive peptide functions. Biotechnol J. 2007;2:435–49.CrossRef
33.
go back to reference Ashmarin IP, Karazeeva EP, Lyapina LA, Samonina GE. The simplest proline-containing peptides PG, GP, PGP, and GPGG: regulatory activity and possible sources of biosynthesis. Biochem Mosc. 1998;63:119–24. Ashmarin IP, Karazeeva EP, Lyapina LA, Samonina GE. The simplest proline-containing peptides PG, GP, PGP, and GPGG: regulatory activity and possible sources of biosynthesis. Biochem Mosc. 1998;63:119–24.
34.
go back to reference Kánai K, Arányi P, Böcskei Z, Ferenczy G, Harmat V, Simon K, Bátori S, Náray-Szabó G, Hermecz I. Prolyl oligopeptidase inhibition by N-acyl-pro-pyrrolidine-type molecules. J Med Chem. 2008;51:7514–22.CrossRef Kánai K, Arányi P, Böcskei Z, Ferenczy G, Harmat V, Simon K, Bátori S, Náray-Szabó G, Hermecz I. Prolyl oligopeptidase inhibition by N-acyl-pro-pyrrolidine-type molecules. J Med Chem. 2008;51:7514–22.CrossRef
35.
go back to reference Castiglione Morelli MA, Bisaccia F, Spisani S, De Biasi M, Traniello S, Tamburro AM. Structure-activity relationships for some elastin-derived peptide chemoattractants. J Pept Res. 1997;49:492–9.CrossRef Castiglione Morelli MA, Bisaccia F, Spisani S, De Biasi M, Traniello S, Tamburro AM. Structure-activity relationships for some elastin-derived peptide chemoattractants. J Pept Res. 1997;49:492–9.CrossRef
36.
go back to reference O'Reilly PJ, Hardison MT, Jackson PL, Xu X, Snelgrove RJ, Gaggar A, Galin FS, Blalock JE. Neutrophils contain prolyl endopeptidase and generate the chemotactic peptide, PGP, from collagen. J Neuroimmunol. 2009;217:51–4.CrossRef O'Reilly PJ, Hardison MT, Jackson PL, Xu X, Snelgrove RJ, Gaggar A, Galin FS, Blalock JE. Neutrophils contain prolyl endopeptidase and generate the chemotactic peptide, PGP, from collagen. J Neuroimmunol. 2009;217:51–4.CrossRef
37.
go back to reference Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides. 2010;31:1949–56.CrossRef Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides. 2010;31:1949–56.CrossRef
38.
go back to reference Morifuji M, Koga J, Kawanaka K, Higuchi M. Branched-chain amino acid-containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles. J Nutr Sci Vitaminol. 2009;55:81–6.CrossRef Morifuji M, Koga J, Kawanaka K, Higuchi M. Branched-chain amino acid-containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles. J Nutr Sci Vitaminol. 2009;55:81–6.CrossRef
39.
go back to reference Ringseis R, Matthes B, Lehmann V, Becker K, Schöps R, Ulbrich-Hofmann R, Eder K. Peptides and hydrolysates from casein and soy protein modulate the release of vasoactive substances from human aortic endothelial cells. Biochim Biophys Acta. 1721;2005:89–97. Ringseis R, Matthes B, Lehmann V, Becker K, Schöps R, Ulbrich-Hofmann R, Eder K. Peptides and hydrolysates from casein and soy protein modulate the release of vasoactive substances from human aortic endothelial cells. Biochim Biophys Acta. 1721;2005:89–97.
40.
go back to reference Takagi H, Shiomi H, Fukui K, Hayashi K, Kiso Y, Kitagawa K. Isolation of a novel analgesic pentapeptide, neo-kyotorphin, from bovine brain. Life Sci. 1983;31:1733–6.CrossRef Takagi H, Shiomi H, Fukui K, Hayashi K, Kiso Y, Kitagawa K. Isolation of a novel analgesic pentapeptide, neo-kyotorphin, from bovine brain. Life Sci. 1983;31:1733–6.CrossRef
Metadata
Title
ACE inhibitory peptides in standard and fermented deer velvet: an in silico and in vitro investigation
Authors
Stephen R. Haines
Mark J. McCann
Anita J. Grosvenor
Ancy Thomas
Alasdair Noble
Stefan Clerens
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2758-3

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue