Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Bronchial Asthma | Research article

Inhibition of airway remodeling and inflammatory response by Icariin in asthma

Authors: Lingli Hu, Lulu Li, Hongying Zhang, Qiuping Li, Shan Jiang, Jian Qiu, Jing Sun, Jingcheng Dong

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Icariin (ICA) is the major active ingredient extracted from Chinese herbal medicine Epimedium, which has the effects of improving cardiovascular function, inducing tumor cell differentiation and increasing bone formation. It is still rarely reported that ICA can exert its therapeutic potential in asthma via anti-airway remodeling. The point of the study was to estimate the role of ICA in anti-.
airway remodeling and its possible mechanism of action in a mouse ovalbumin.
(OVA)-induced asthma model.

Methods

Hematoxylin and Eosin Staining were performed for measuring airway remodeling related indicators. ELISA, Western blot and Immunohistochemistr-.
y (IHC) were used for analyzing the level of protein. RT-PCR was used for analyzing the level of mRNA.

Results

On days 1 and 8, mice were sensitized to OVA by intraperitoneal injection. From day 16 to day 43, previously sensitized mice were exposed to OVA once daily by nebulizer. Interventions were performed orally with ICA (ICA low, medium and high dose groups) or dexamethasone 1 h prior to each OVA exposure. ICA improves pulmonary function, attenuates pulmonary inflammation and airway remodeling in mice exposed to OVA. Histological and Western blot analysis of the lungs show that ICA suppressed transforming growth factor beta 1 and vascular endothelial growth factor expression. Increase in interleukin 13 and endothelin-1 in serum and bronchoalveolar lavage fluid in OVA-induced asthmatic mice are also decreased by ICA. ICA attenuates airway smooth muscle cell proliferation, as well as key factors in the MAPK/Erk pathway.

Conclusions

The fact that ICA can alleviate OVA-induced asthma at least partly through inhibition of ASMC proliferation via MAPK/Erk pathway provides a solid theoretical basis for ICA as a replacement therapy for asthma. These data reveal the underlying reasons of the use of ICA-rich herbs in Traditional Chinese Medicine to achieve good results in treating asthma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Halwani R, Al-Muhsen S, Hamid Q. Airway remodeling in asthma. Curr Opin Pharmacol. 2010;10(3):236–45.PubMedCrossRef Halwani R, Al-Muhsen S, Hamid Q. Airway remodeling in asthma. Curr Opin Pharmacol. 2010;10(3):236–45.PubMedCrossRef
3.
go back to reference Homer RJ, Elias JA. Airway remodeling in asthma: therapeutic implications of mechanisms. Physiology (Bethesda). 2005;20:28–35. Homer RJ, Elias JA. Airway remodeling in asthma: therapeutic implications of mechanisms. Physiology (Bethesda). 2005;20:28–35.
4.
go back to reference Michalik, M., et al., Asthmatic bronchial fibroblasts demonstrate enhanced potential to differentiate into myofibroblasts in culture. Med Sci Monit, 2009. 15(7): p. Br194–201. Michalik, M., et al., Asthmatic bronchial fibroblasts demonstrate enhanced potential to differentiate into myofibroblasts in culture. Med Sci Monit, 2009. 15(7): p. Br194–201.
5.
go back to reference Ito I, et al. Platelet-derived growth factor and transforming growth factor-beta modulate the expression of matrix metalloproteinases and migratory function of human airway smooth muscle cells. Clin Exp Allergy. 2009;39(9):1370–80.PubMedCrossRef Ito I, et al. Platelet-derived growth factor and transforming growth factor-beta modulate the expression of matrix metalloproteinases and migratory function of human airway smooth muscle cells. Clin Exp Allergy. 2009;39(9):1370–80.PubMedCrossRef
6.
go back to reference Clauss M. Molecular biology of the VEGF and the VEGF receptor family. Semin Thromb Hemost. 2000;26(5):561–9.PubMedCrossRef Clauss M. Molecular biology of the VEGF and the VEGF receptor family. Semin Thromb Hemost. 2000;26(5):561–9.PubMedCrossRef
7.
go back to reference Hoshino M, Takahashi M, Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol. 2001;107(2):295–301.PubMedCrossRef Hoshino M, Takahashi M, Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol. 2001;107(2):295–301.PubMedCrossRef
8.
go back to reference Lee YC, Lee HK. Vascular endothelial growth factor in patients with acute asthma. J Allergy Clin Immunol. 2001;107(6):1106.PubMedCrossRef Lee YC, Lee HK. Vascular endothelial growth factor in patients with acute asthma. J Allergy Clin Immunol. 2001;107(6):1106.PubMedCrossRef
9.
go back to reference Lee CG, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10(10):1095–103.PubMedPubMedCentralCrossRef Lee CG, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10(10):1095–103.PubMedPubMedCentralCrossRef
10.
go back to reference Ammit AJ, Panettieri RA Jr. Airway smooth muscle cell hyperplasia: a therapeutic target in airway remodeling in asthma? Prog Cell Cycle Res. 2003;5:49–57.PubMed Ammit AJ, Panettieri RA Jr. Airway smooth muscle cell hyperplasia: a therapeutic target in airway remodeling in asthma? Prog Cell Cycle Res. 2003;5:49–57.PubMed
12.
go back to reference Bjorck T, Gustafsson LE, Dahlen SE. Isolated bronchi from asthmatics are hyperresponsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. Am Rev Respir Dis. 1992;145(5):1087–91.PubMedCrossRef Bjorck T, Gustafsson LE, Dahlen SE. Isolated bronchi from asthmatics are hyperresponsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. Am Rev Respir Dis. 1992;145(5):1087–91.PubMedCrossRef
13.
go back to reference Amrani Y, et al. Bronchial hyperresponsiveness: insights into new signaling molecules. Curr Opin Pharmacol. 2004;4(3):230–4.PubMedCrossRef Amrani Y, et al. Bronchial hyperresponsiveness: insights into new signaling molecules. Curr Opin Pharmacol. 2004;4(3):230–4.PubMedCrossRef
14.
go back to reference Schuliga M, et al. Transforming growth factor-beta-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2. Am J Respir Cell Mol Biol. 2013;48(3):346–53.PubMedPubMedCentralCrossRef Schuliga M, et al. Transforming growth factor-beta-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2. Am J Respir Cell Mol Biol. 2013;48(3):346–53.PubMedPubMedCentralCrossRef
15.
go back to reference Doherty T, Broide D. Cytokines and growth factors in airway remodeling in asthma. Curr Opin Immunol. 2007;19(6):676–80.PubMedCrossRef Doherty T, Broide D. Cytokines and growth factors in airway remodeling in asthma. Curr Opin Immunol. 2007;19(6):676–80.PubMedCrossRef
16.
go back to reference Molet SM, Hamid QA, Hamilos DL. IL-11 and IL-17 expression in nasal polyps: relationship to collagen deposition and suppression by intranasal fluticasone propionate. Laryngoscope. 2003;113(10):1803–12.PubMedCrossRef Molet SM, Hamid QA, Hamilos DL. IL-11 and IL-17 expression in nasal polyps: relationship to collagen deposition and suppression by intranasal fluticasone propionate. Laryngoscope. 2003;113(10):1803–12.PubMedCrossRef
17.
go back to reference Kelly, M.M., et al., Effects of budesonide and formoterol on allergen-induced airway responses, inflammation, and airway remodeling in asthma. J Allergy Clin Immunol, 2010. 125(2): p. 349–356.e13. Kelly, M.M., et al., Effects of budesonide and formoterol on allergen-induced airway responses, inflammation, and airway remodeling in asthma. J Allergy Clin Immunol, 2010. 125(2): p. 349–356.e13.
18.
go back to reference Henderson WR Jr, et al. Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med. 2006;173(7):718–28.PubMedCrossRef Henderson WR Jr, et al. Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med. 2006;173(7):718–28.PubMedCrossRef
19.
go back to reference Oh YC, et al. Inhibitory effects of Epimedium herb on the inflammatory response in vitro and in vivo. Am J Chin Med. 2015;43(5):953–68.PubMedCrossRef Oh YC, et al. Inhibitory effects of Epimedium herb on the inflammatory response in vitro and in vivo. Am J Chin Med. 2015;43(5):953–68.PubMedCrossRef
20.
go back to reference Liu MH, et al. Icariin protects murine chondrocytes from lipopolysaccharide-induced inflammatory responses and extracellular matrix degradation. Nutr Res. 2010;30(1):57–65.PubMedCrossRef Liu MH, et al. Icariin protects murine chondrocytes from lipopolysaccharide-induced inflammatory responses and extracellular matrix degradation. Nutr Res. 2010;30(1):57–65.PubMedCrossRef
21.
go back to reference Sun S, et al. Icariin attenuates high glucose-induced apoptosis, oxidative stress, and inflammation in human umbilical venous endothelial cells. Planta Med. 2019;85(6):473–82.PubMedCrossRef Sun S, et al. Icariin attenuates high glucose-induced apoptosis, oxidative stress, and inflammation in human umbilical venous endothelial cells. Planta Med. 2019;85(6):473–82.PubMedCrossRef
22.
go back to reference Sun X, et al. Icariin inhibits LPS-induced cell inflammatory response by promoting GRalpha nuclear translocation and upregulating GRalpha expression. Life Sci. 2018;195:33–43.PubMedCrossRef Sun X, et al. Icariin inhibits LPS-induced cell inflammatory response by promoting GRalpha nuclear translocation and upregulating GRalpha expression. Life Sci. 2018;195:33–43.PubMedCrossRef
23.
go back to reference Li C, et al. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci. 2015;126:57–68.PubMedCrossRef Li C, et al. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci. 2015;126:57–68.PubMedCrossRef
24.
go back to reference Li B, et al. Icariin attenuates glucocorticoid insensitivity mediated by repeated psychosocial stress on an ovalbumin-induced murine model of asthma. Int Immunopharmacol. 2014;19(2):381–90.PubMedCrossRef Li B, et al. Icariin attenuates glucocorticoid insensitivity mediated by repeated psychosocial stress on an ovalbumin-induced murine model of asthma. Int Immunopharmacol. 2014;19(2):381–90.PubMedCrossRef
25.
go back to reference Xiong W, et al. Roles of the antioxidant properties of icariin and its phosphorylated derivative in the protection against duck virus hepatitis. BMC Vet Res. 2014;10:226.PubMedPubMedCentralCrossRef Xiong W, et al. Roles of the antioxidant properties of icariin and its phosphorylated derivative in the protection against duck virus hepatitis. BMC Vet Res. 2014;10:226.PubMedPubMedCentralCrossRef
28.
go back to reference Wang YK, Huang ZQ. Protective effects of icariin on human umbilical vein endothelial cell injury induced by H2O2 in vitro. Pharmacol Res. 2005;52(2):174–82.PubMedCrossRef Wang YK, Huang ZQ. Protective effects of icariin on human umbilical vein endothelial cell injury induced by H2O2 in vitro. Pharmacol Res. 2005;52(2):174–82.PubMedCrossRef
29.
go back to reference Song YH, et al. Icariin attenuated oxidative stress induced-cardiac apoptosis by mitochondria protection and ERK activation. Biomed Pharmacother. 2016;83:1089–94.PubMedCrossRef Song YH, et al. Icariin attenuated oxidative stress induced-cardiac apoptosis by mitochondria protection and ERK activation. Biomed Pharmacother. 2016;83:1089–94.PubMedCrossRef
30.
go back to reference Xiang J, et al. Effect of icariin on hypoxia/reoxygenation injury in neonatal rat cardiomyocytes. Zhonghua Yi Xue Za Zhi. 2015;95(45):3701–4.PubMed Xiang J, et al. Effect of icariin on hypoxia/reoxygenation injury in neonatal rat cardiomyocytes. Zhonghua Yi Xue Za Zhi. 2015;95(45):3701–4.PubMed
31.
go back to reference Nie J, et al. Icariin inhibits beta-amyloid peptide segment 25-35 induced expression of beta-secretase in rat hippocampus. Eur J Pharmacol. 2010;626(2–3):213–8.PubMedCrossRef Nie J, et al. Icariin inhibits beta-amyloid peptide segment 25-35 induced expression of beta-secretase in rat hippocampus. Eur J Pharmacol. 2010;626(2–3):213–8.PubMedCrossRef
32.
go back to reference Sha D, et al. Icariin inhibits neurotoxicity of beta-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts. Neuroreport. 2009;20(17):1564–7.PubMedCrossRef Sha D, et al. Icariin inhibits neurotoxicity of beta-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts. Neuroreport. 2009;20(17):1564–7.PubMedCrossRef
33.
go back to reference He W, et al. Immunoregulatory effects of the herba Epimediia glycoside icariin. Arzneimittelforschung. 1995;45(8):910–3.PubMed He W, et al. Immunoregulatory effects of the herba Epimediia glycoside icariin. Arzneimittelforschung. 1995;45(8):910–3.PubMed
34.
go back to reference Zhao F, Tang YZ, Liu ZQ. Protective effect of icariin on DNA against radical-induced oxidative damage. J Pharm Pharmacol. 2007;59(12):1729–32.PubMedCrossRef Zhao F, Tang YZ, Liu ZQ. Protective effect of icariin on DNA against radical-induced oxidative damage. J Pharm Pharmacol. 2007;59(12):1729–32.PubMedCrossRef
35.
go back to reference Xiao HB, et al. Icariin regulates PRMT/ADMA/DDAH pathway to improve endothelial function. Pharmacol Rep. 2015;67(6):1147–54.PubMedCrossRef Xiao HB, et al. Icariin regulates PRMT/ADMA/DDAH pathway to improve endothelial function. Pharmacol Rep. 2015;67(6):1147–54.PubMedCrossRef
37.
go back to reference Pichavant, M., et al., Animal models of airway sensitization. Curr Protoc Immunol, 2007. Chapter 15: p. Unit 15.18. Pichavant, M., et al., Animal models of airway sensitization. Curr Protoc Immunol, 2007. Chapter 15: p. Unit 15.18.
38.
go back to reference Hu L, et al. Epigenetic regulation of interleukin 6 by histone acetylation in macrophages and its role in Paraquat-induced pulmonary fibrosis. Front Immunol. 2016;7:696.PubMed Hu L, et al. Epigenetic regulation of interleukin 6 by histone acetylation in macrophages and its role in Paraquat-induced pulmonary fibrosis. Front Immunol. 2016;7:696.PubMed
39.
go back to reference Zhang FQ, et al. Therapeutic efficacy of a co-blockade of IL-13 and IL-25 on airway inflammation and remodeling in a mouse model of asthma. Int Immunopharmacol. 2017;46:133–40.PubMedCrossRef Zhang FQ, et al. Therapeutic efficacy of a co-blockade of IL-13 and IL-25 on airway inflammation and remodeling in a mouse model of asthma. Int Immunopharmacol. 2017;46:133–40.PubMedCrossRef
40.
go back to reference Ntontsi P, et al. Targeted anti-IL-13 therapies in asthma: current data and future perspectives. Expert Opin Investig Drugs. 2018;27(2):179–86.PubMedCrossRef Ntontsi P, et al. Targeted anti-IL-13 therapies in asthma: current data and future perspectives. Expert Opin Investig Drugs. 2018;27(2):179–86.PubMedCrossRef
42.
go back to reference Nishiyama, S.K., et al., Vascular function and endothelin-1: tipping the balance between vasodilation and vasoconstriction. J Appl Physiol (1985), 2017. 122(2): p. 354–360.PubMedCrossRef Nishiyama, S.K., et al., Vascular function and endothelin-1: tipping the balance between vasodilation and vasoconstriction. J Appl Physiol (1985), 2017. 122(2): p. 354–360.PubMedCrossRef
43.
go back to reference Janakidevi K, et al. Endothelin-1 stimulates DNA synthesis and proliferation of pulmonary artery smooth muscle cells. Am J Phys. 1992;263(6 Pt 1):C1295–301.CrossRef Janakidevi K, et al. Endothelin-1 stimulates DNA synthesis and proliferation of pulmonary artery smooth muscle cells. Am J Phys. 1992;263(6 Pt 1):C1295–301.CrossRef
44.
go back to reference Zhang Y, Edvinsson L, Xu CB. Up-regulation of endothelin receptors induced by cigarette smoke--involvement of MAPK in vascular and airway hyper-reactivity. ScientificWorldJournal. 2010;10:2157–66.PubMedPubMedCentralCrossRef Zhang Y, Edvinsson L, Xu CB. Up-regulation of endothelin receptors induced by cigarette smoke--involvement of MAPK in vascular and airway hyper-reactivity. ScientificWorldJournal. 2010;10:2157–66.PubMedPubMedCentralCrossRef
45.
go back to reference Gregory LG, et al. Endothelin-1 directs airway remodeling and hyper-reactivity in a murine asthma model. Allergy. 2013;68(12):1579–88.PubMedCrossRef Gregory LG, et al. Endothelin-1 directs airway remodeling and hyper-reactivity in a murine asthma model. Allergy. 2013;68(12):1579–88.PubMedCrossRef
46.
go back to reference Lan B, et al. Airway epithelial compression promotes airway smooth muscle proliferation and contraction. Am J Physiol Lung Cell Mol Physiol. 2018;315(5):L645–l652.PubMedPubMedCentralCrossRef Lan B, et al. Airway epithelial compression promotes airway smooth muscle proliferation and contraction. Am J Physiol Lung Cell Mol Physiol. 2018;315(5):L645–l652.PubMedPubMedCentralCrossRef
47.
go back to reference Russell MA, et al. Differential effects of interleukin-13 and interleukin-6 on Jak/STAT signaling and cell viability in pancreatic beta-cells. Islets. 2013;5(2):95–105.PubMedPubMedCentralCrossRef Russell MA, et al. Differential effects of interleukin-13 and interleukin-6 on Jak/STAT signaling and cell viability in pancreatic beta-cells. Islets. 2013;5(2):95–105.PubMedPubMedCentralCrossRef
49.
go back to reference Dezateux C, Stocks J. Lung development and early origins of childhood respiratory illness. Br Med Bull. 1997;53(1):40–57.PubMedCrossRef Dezateux C, Stocks J. Lung development and early origins of childhood respiratory illness. Br Med Bull. 1997;53(1):40–57.PubMedCrossRef
50.
go back to reference Expert Panel Report 3 (EPR-3): Guidelines for the diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol, 2007 120(5 Suppl): p. S94–138. Expert Panel Report 3 (EPR-3): Guidelines for the diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol, 2007 120(5 Suppl): p. S94–138.
51.
go back to reference Opina MT, Moore WC. Phenotype-driven therapeutics in severe asthma. Curr Allergy Asthma Rep. 2017;17(2):10.PubMedCrossRef Opina MT, Moore WC. Phenotype-driven therapeutics in severe asthma. Curr Allergy Asthma Rep. 2017;17(2):10.PubMedCrossRef
52.
go back to reference Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. American Thoracic Society. Am J Respir Crit Care Med, 2000. 162(6): p. 2341–2351. Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. American Thoracic Society. Am J Respir Crit Care Med, 2000. 162(6): p. 2341–2351.
53.
go back to reference Shergis JL, et al. Herbal medicine for adults with asthma: a systematic review. J Asthma. 2016;53(6):650–9.PubMedCrossRef Shergis JL, et al. Herbal medicine for adults with asthma: a systematic review. J Asthma. 2016;53(6):650–9.PubMedCrossRef
54.
go back to reference Gosens R, Grainge C. Bronchoconstriction and airway biology: potential impact and therapeutic opportunities. Chest. 2015;147(3):798–803.PubMedCrossRef Gosens R, Grainge C. Bronchoconstriction and airway biology: potential impact and therapeutic opportunities. Chest. 2015;147(3):798–803.PubMedCrossRef
55.
go back to reference Noble PB, et al. Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling. Pulm Pharmacol Ther. 2014;29(2):96–107.PubMedCrossRef Noble PB, et al. Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling. Pulm Pharmacol Ther. 2014;29(2):96–107.PubMedCrossRef
56.
go back to reference O'Reilly, R., et al., Increased airway smooth muscle in preschool wheezers who have asthma at school age. J Allergy Clin Immunol, 2013. 131(4): p. 1024–32, 1032.e1–16.CrossRef O'Reilly, R., et al., Increased airway smooth muscle in preschool wheezers who have asthma at school age. J Allergy Clin Immunol, 2013. 131(4): p. 1024–32, 1032.e1–16.CrossRef
57.
go back to reference Manuyakorn W, Howarth PH, Holgate ST. Airway remodelling in asthma and novel therapy. Asian Pac J Allergy Immunol. 2013;31(1):3–10.PubMed Manuyakorn W, Howarth PH, Holgate ST. Airway remodelling in asthma and novel therapy. Asian Pac J Allergy Immunol. 2013;31(1):3–10.PubMed
58.
go back to reference Kroegel C, et al. Endobronchial secretion of interleukin-13 following local allergen challenge in atopic asthma: relationship to interleukin-4 and eosinophil counts. Eur Respir J. 1996;9(5):899–904.PubMedCrossRef Kroegel C, et al. Endobronchial secretion of interleukin-13 following local allergen challenge in atopic asthma: relationship to interleukin-4 and eosinophil counts. Eur Respir J. 1996;9(5):899–904.PubMedCrossRef
59.
go back to reference Gawlik R, et al. Concentration of endothelin in plasma and BALF fluid from asthmatic patients. J Physiol Pharmacol. 2006;57(Suppl 4):103–10.PubMed Gawlik R, et al. Concentration of endothelin in plasma and BALF fluid from asthmatic patients. J Physiol Pharmacol. 2006;57(Suppl 4):103–10.PubMed
60.
go back to reference Sun Y, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600–4.PubMedCrossRef Sun Y, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600–4.PubMedCrossRef
61.
go back to reference Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res. 2015;16:134.PubMedPubMedCentralCrossRef Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res. 2015;16:134.PubMedPubMedCentralCrossRef
Metadata
Title
Inhibition of airway remodeling and inflammatory response by Icariin in asthma
Authors
Lingli Hu
Lulu Li
Hongying Zhang
Qiuping Li
Shan Jiang
Jian Qiu
Jing Sun
Jingcheng Dong
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2743-x

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue