Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Obesity | Research article

Protein hydrolysate from potato confers hepatic-protection in hamsters against high fat diet induced apoptosis and fibrosis by suppressing Caspase-3 and MMP2/9 and by enhancing Akt-survival pathway

Authors: Shibu Marthandam Asokan, Tsu-Han Hung, Zong-Yan Li, Wen-Dee Chiang, Wan-Teng Lin

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

A potato protein hydrolysate, APPH is a potential anti-obesity diet ingredient. Since, obesity leads to deterioration of liver function and associated liver diseases, in this study the effect of APPH on high fat diet (HFD) associated liver damages was investigated.

Methods

Six week old male hamsters were randomly separated to six groups (n = 8) as control, HFD (HFD fed obese), L-APPH (HFD + 15 mg/kg/day of APPH), M-APPH (HFD + 30 mg/kg/day), H-APPH (HFD + 75 mg/kg/day of APPH) and PB (HFD + 500 mg/kg/day of probucol). HFD fed hamsters were administered with APPH 50 days through oral gavage. The animals were euthanized and the number of apoptotic nuclei in liver tissue was determined by TUNEL staining and the extent of interstitial fibrosis was determined by Masson’s trichrome staining. Modulation in the molecular events associated with apoptosis and fibrosis were elucidated from the western blotting analysis of the total protein extracts.

Results

Hamsters fed with high fat diet showed symptoms of liver damage as measured from serum markers like alanine aminotransferase and aspartate aminotransferase levels. However a 50 day long supplementation of APPH effectively ameliorated the effects of HFD. HFD also modulated the expression of survival and apoptosis proteins in the hamster liver. Further the HFD groups showed elevated levels of fibrosis markers in liver. The increase in fibrosis and apoptosis was correlated with the increase in the levels of phosphorylated extracellular signal-regulated kinases (pERK1/2) revealing a potential role of ERK in the HFD mediated liver damage. However APPH treatment reduced the effect of HFD on the apoptosis and fibrosis markers considerably and provided hepato-protection.

Conclusion

APPH can therefore be considered as an efficient therapeutic agent to ameliorate high fat diet related liver damages.
Literature
1.
go back to reference Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5S.CrossRef Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5S.CrossRef
2.
go back to reference Fried M, Hainer V, Basdevant A, Buchwald H, Deitel M, Finer N, Greve JW, Horber F, Mathus-Vliegen E, Scopinaro N, et al. Interdisciplinary European guidelines on surgery of severe obesity. Obes Facts. 2008;1(1):52–9.CrossRef Fried M, Hainer V, Basdevant A, Buchwald H, Deitel M, Finer N, Greve JW, Horber F, Mathus-Vliegen E, Scopinaro N, et al. Interdisciplinary European guidelines on surgery of severe obesity. Obes Facts. 2008;1(1):52–9.CrossRef
3.
go back to reference Pagotto U, Vanuzzo D, Vicennati V, Pasquali R. Pharmacological therapy of obesity. G Ital Cardiol. 2008;9(4 Suppl 1):83S–93S. Pagotto U, Vanuzzo D, Vicennati V, Pasquali R. Pharmacological therapy of obesity. G Ital Cardiol. 2008;9(4 Suppl 1):83S–93S.
4.
go back to reference Marovic D. Elevated body mass index and fatty liver. Srp Arh Celok Lek. 2008;136(3–4):122–5.CrossRef Marovic D. Elevated body mass index and fatty liver. Srp Arh Celok Lek. 2008;136(3–4):122–5.CrossRef
5.
go back to reference Artham SM, Lavie CJ, Milani RV, Ventura HO. The obesity paradox: impact of obesity on the prevalence and prognosis of cardiovascular diseases. Postgrad Med. 2008;120(2):34–41.CrossRef Artham SM, Lavie CJ, Milani RV, Ventura HO. The obesity paradox: impact of obesity on the prevalence and prognosis of cardiovascular diseases. Postgrad Med. 2008;120(2):34–41.CrossRef
6.
go back to reference Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.CrossRef Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.CrossRef
7.
go back to reference Kim S, Sohn I, Ahn JI, Lee KH, Lee YS, Lee YS. Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene. 2004;340(1):99–109.CrossRef Kim S, Sohn I, Ahn JI, Lee KH, Lee YS, Lee YS. Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene. 2004;340(1):99–109.CrossRef
8.
go back to reference Carmiel-Haggai M, Cederbaum AI, Nieto N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J. 2005;19(1):136–8.CrossRef Carmiel-Haggai M, Cederbaum AI, Nieto N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J. 2005;19(1):136–8.CrossRef
9.
go back to reference Milagro FI, Campion J, Martinez JA. Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity. 2006;14(7):1118–23.CrossRef Milagro FI, Campion J, Martinez JA. Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity. 2006;14(7):1118–23.CrossRef
10.
go back to reference Otogawa K, Kinoshita K, Fujii H, Sakabe M, Shiga R, Nakatani K, Ikeda K, Nakajima Y, Ikura Y, Ueda M, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol. 2007;170(3):967–80.CrossRef Otogawa K, Kinoshita K, Fujii H, Sakabe M, Shiga R, Nakatani K, Ikeda K, Nakajima Y, Ikura Y, Ueda M, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol. 2007;170(3):967–80.CrossRef
11.
go back to reference Lim J, Liu Z, Apontes P, Feng D, Pessin JE, Sauve AA, Angeletti RH, Chi Y. Dual mode action of mangiferin in mouse liver under high fat diet. PLoS One. 2014;9(3):e90137.CrossRef Lim J, Liu Z, Apontes P, Feng D, Pessin JE, Sauve AA, Angeletti RH, Chi Y. Dual mode action of mangiferin in mouse liver under high fat diet. PLoS One. 2014;9(3):e90137.CrossRef
12.
go back to reference Gazzana G, Borlak J. An update on the mouse liver proteome. Proteome Sci. 2009;7:35.CrossRef Gazzana G, Borlak J. An update on the mouse liver proteome. Proteome Sci. 2009;7:35.CrossRef
13.
go back to reference Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010;23(2):270–99.CrossRef Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010;23(2):270–99.CrossRef
14.
go back to reference Hohos NM, Skaznik-Wikiel ME. High-fat diet and female fertility. Endocrinology. 2017;158(8):2407–19.CrossRef Hohos NM, Skaznik-Wikiel ME. High-fat diet and female fertility. Endocrinology. 2017;158(8):2407–19.CrossRef
15.
go back to reference Tang LL, Tang XH, Li X, Yu HB, Xie ZG, Liu XY, Zhou ZG. Effect of high-fat or high-glucose diet on obesity and visceral adipose tissue in mice. Zhongguo yi xue ke xue yuan xue bao. 2014;36(6):614–9.PubMed Tang LL, Tang XH, Li X, Yu HB, Xie ZG, Liu XY, Zhou ZG. Effect of high-fat or high-glucose diet on obesity and visceral adipose tissue in mice. Zhongguo yi xue ke xue yuan xue bao. 2014;36(6):614–9.PubMed
16.
go back to reference Tung YT, Chen HL, Wu HS, Ho MH, Chong KY, Chen CM. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation. Mol Nutr Food Res. 2018;62(3).CrossRef Tung YT, Chen HL, Wu HS, Ho MH, Chong KY, Chen CM. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation. Mol Nutr Food Res. 2018;62(3).CrossRef
17.
go back to reference Boutagy NE, Neilson AP, Osterberg KL, Smithson AT, Englund TR, Davy BM, Hulver MW, Davy KP. Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr Res. 2015;35(10):858–64.CrossRef Boutagy NE, Neilson AP, Osterberg KL, Smithson AT, Englund TR, Davy BM, Hulver MW, Davy KP. Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr Res. 2015;35(10):858–64.CrossRef
18.
go back to reference Dalbøge LS, Pedersen PJ, Hansen G, Fabricius K, Hansen HB, Jelsing J, Vrang N. A hamster model of diet-induced obesity for preclinical evaluation of anti-obesity, anti-diabetic and lipid modulating agents. PLoS One. 2015;10(8):e0135634.CrossRef Dalbøge LS, Pedersen PJ, Hansen G, Fabricius K, Hansen HB, Jelsing J, Vrang N. A hamster model of diet-induced obesity for preclinical evaluation of anti-obesity, anti-diabetic and lipid modulating agents. PLoS One. 2015;10(8):e0135634.CrossRef
19.
go back to reference Hu WS, Ting WJ, Chiang WD, Pai P, Yeh YL, Chang CH, Lin WT, Huang CY. The heart protection effect of Alcalase potato protein Hydrolysate is through IGF1R-PI3K-Akt compensatory reactivation in aging rats on high fat diets. Int J Mol Sci. 2015;16(5):10158–72.CrossRef Hu WS, Ting WJ, Chiang WD, Pai P, Yeh YL, Chang CH, Lin WT, Huang CY. The heart protection effect of Alcalase potato protein Hydrolysate is through IGF1R-PI3K-Akt compensatory reactivation in aging rats on high fat diets. Int J Mol Sci. 2015;16(5):10158–72.CrossRef
20.
go back to reference Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc pathol. 2006;15(6):318–30.CrossRef Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc pathol. 2006;15(6):318–30.CrossRef
21.
go back to reference Bhathena J, Kulamarva A, Martoni C, Urbanska AM, Malhotra M, Paul A, Prakash S. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease. Diabetes metab syndr obes. 2011;4:195–203.PubMedPubMedCentral Bhathena J, Kulamarva A, Martoni C, Urbanska AM, Malhotra M, Paul A, Prakash S. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease. Diabetes metab syndr obes. 2011;4:195–203.PubMedPubMedCentral
22.
go back to reference Chiang WD, Huang CY, Paul CR, Lee ZY, Lin WT. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats. Food Nutr Res. 2016;60:31417.CrossRef Chiang WD, Huang CY, Paul CR, Lee ZY, Lin WT. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats. Food Nutr Res. 2016;60:31417.CrossRef
23.
go back to reference Moore JB. Non-alcoholic fatty liver disease: the hepatic consequence of obesity and the metabolic syndrome. Proc Nutr Soc. 2010;69(2):211–20.CrossRef Moore JB. Non-alcoholic fatty liver disease: the hepatic consequence of obesity and the metabolic syndrome. Proc Nutr Soc. 2010;69(2):211–20.CrossRef
24.
go back to reference Huang C-Y, Lee S-D. Possible pathophysiology of heart failure in obesity: cardiac apoptosis. BioMedicine. 2012;2(1):36–40.CrossRef Huang C-Y, Lee S-D. Possible pathophysiology of heart failure in obesity: cardiac apoptosis. BioMedicine. 2012;2(1):36–40.CrossRef
25.
go back to reference Sundaram S, Johnson AR, Makowski L. Obesity, metabolism and the microenvironment: links to cancer. J carcinog. 2013;12:19.CrossRef Sundaram S, Johnson AR, Makowski L. Obesity, metabolism and the microenvironment: links to cancer. J carcinog. 2013;12:19.CrossRef
26.
go back to reference Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol. 2007;46(5):955–75.CrossRef Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol. 2007;46(5):955–75.CrossRef
27.
go back to reference Delire B, Lebrun V, Selvais C, Henriet P, Bertrand A, Horsmans Y, Leclercq IA. Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling. Aging (Albany NY). 2016;9(1):98–113.CrossRef Delire B, Lebrun V, Selvais C, Henriet P, Bertrand A, Horsmans Y, Leclercq IA. Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling. Aging (Albany NY). 2016;9(1):98–113.CrossRef
28.
go back to reference Kim WR, Flamm SL, Di Bisceglie AM, Bodenheimer HC. A PPCA: serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology. 2008;47(4):1363–70.CrossRef Kim WR, Flamm SL, Di Bisceglie AM, Bodenheimer HC. A PPCA: serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology. 2008;47(4):1363–70.CrossRef
29.
30.
go back to reference Sampliner RE. The liver disease of asymptomatic patients with elevated aminotransferases. Hepatology. 1989;10(4):524–5.CrossRef Sampliner RE. The liver disease of asymptomatic patients with elevated aminotransferases. Hepatology. 1989;10(4):524–5.CrossRef
31.
go back to reference Park MT, Kang JA, Choi JA, Kang CM, Kim TH, Bae S, Kang S, Kim S, Choi WI, Cho CK, et al. Phytosphingosine induces apoptotic cell death via caspase 8 activation and Bax translocation in human cancer cells. Clin cancer res. 2003;9(2):878–85.PubMed Park MT, Kang JA, Choi JA, Kang CM, Kim TH, Bae S, Kang S, Kim S, Choi WI, Cho CK, et al. Phytosphingosine induces apoptotic cell death via caspase 8 activation and Bax translocation in human cancer cells. Clin cancer res. 2003;9(2):878–85.PubMed
32.
go back to reference Fulda S. Modulation of mitochondrial apoptosis by PI3K inhibitors. Mitochondrion. 2013;13(3):195–8.CrossRef Fulda S. Modulation of mitochondrial apoptosis by PI3K inhibitors. Mitochondrion. 2013;13(3):195–8.CrossRef
33.
go back to reference Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157–80.CrossRef Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157–80.CrossRef
34.
go back to reference Chakraborty JB, Oakley F, Walsh MJ. Mechanisms and biomarkers of apoptosis in liver disease and fibrosis. Int J Hepatol. 2012;2012:648915.CrossRef Chakraborty JB, Oakley F, Walsh MJ. Mechanisms and biomarkers of apoptosis in liver disease and fibrosis. Int J Hepatol. 2012;2012:648915.CrossRef
35.
go back to reference Han YP. Matrix metalloproteinases, the pros and cons, in liver fibrosis. J Gastroenterol Hepatol. 2006;21(Suppl 3):S88–91.CrossRef Han YP. Matrix metalloproteinases, the pros and cons, in liver fibrosis. J Gastroenterol Hepatol. 2006;21(Suppl 3):S88–91.CrossRef
Metadata
Title
Protein hydrolysate from potato confers hepatic-protection in hamsters against high fat diet induced apoptosis and fibrosis by suppressing Caspase-3 and MMP2/9 and by enhancing Akt-survival pathway
Authors
Shibu Marthandam Asokan
Tsu-Han Hung
Zong-Yan Li
Wen-Dee Chiang
Wan-Teng Lin
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Obesity
Obesity
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2700-8

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue