Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Allergic Contact Dermatitis | Research article

Immunosuppressive effect of hispidulin in allergic contact dermatitis

Authors: Premrutai Thitilertdecha, Panwadee Pluangnooch, Sunita Timalsena, Kitipong Soontrapa

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Long-term use of most immunosuppressants to treat allergic contact dermatitis (ACD) generates unavoidable severe side effects, warranting discovery or development of new immunosuppressants with good efficacy and low toxicity is urgently needed to treat this condition. Hispidulin, a flavonoid compound that can be delivered topically due to its favorable skin penetrability properties, has recently been reported to possess anti-inflammatory and immunosuppressive properties. However, no studies have investigated the effect of hispidulin on Th1 cell activities in an ACD setting.

Methods

A contact hypersensitivity (CHS) mouse model was designed to simulate human ACD. The immunosuppressive effect of hispidulin was investigated via ear thickness, histologic changes (i.e., edema and spongiosis), and interferon-gamma (IFN-γ) gene expression in 1-fluoro-2,4-dinitrobenzene (DNFB)-sensitized mice. Cytotoxicity, total number of CD4+ T cells, and percentage of IFN-γ-producing CD4+ T cells were also investigated in vitro using isolated CD4+ T cells from murine spleens.

Results

Topically applied hispidulin effectively inhibited ear swelling (as measured by reduction in ear thickness), and reduced spongiosis, IFN-γ gene expression, and the number of infiltrated immune cells. The inhibitory effect of hispidulin was observed within 6 h after the challenge, and the observed effects were similar to those effectuated after dexamethasone administration. Hispidulin at a concentration up to 50 μM also suppressed IFN-γ-producing CD4+ T cells in a dose-dependent manner without inducing cell death, and without a change in total frequencies of CD4+ T cells among different concentration groups.

Conclusion

The results of this study, therefore, suggest hispidulin as a novel compound for the treatment of ACD via the suppression of IFN-γ production in Th1 cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim H, Kim M, Kim H, Lee GS, An WG, Cho SI. Anti-inflammatory activities of Dictamnus dasycarpus Turcz., root bark on allergic contact dermatitis induced by dinitrofluorobenzene in mice. J Ethnopharmacol. 2013;149(2):471–7.CrossRef Kim H, Kim M, Kim H, Lee GS, An WG, Cho SI. Anti-inflammatory activities of Dictamnus dasycarpus Turcz., root bark on allergic contact dermatitis induced by dinitrofluorobenzene in mice. J Ethnopharmacol. 2013;149(2):471–7.CrossRef
2.
go back to reference Choi JK, Oh HM, Lee S, Park JW, Khang D, Lee SW, et al. Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model. Toxicol Appl Pharmacol. 2013;269(1):72–80.CrossRef Choi JK, Oh HM, Lee S, Park JW, Khang D, Lee SW, et al. Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model. Toxicol Appl Pharmacol. 2013;269(1):72–80.CrossRef
3.
go back to reference Zemelka-Wiacek M, Majewska-Szczepanik M, Pyrczak W, Szczepanik M. Complementary methods for contact hypersensitivity (CHS) evaluation in mice. J Immunol Methods. 2013;387(1–2):270–5.CrossRef Zemelka-Wiacek M, Majewska-Szczepanik M, Pyrczak W, Szczepanik M. Complementary methods for contact hypersensitivity (CHS) evaluation in mice. J Immunol Methods. 2013;387(1–2):270–5.CrossRef
4.
go back to reference Bond WS. Toxic reactions and side effects of glucocorticoids in man. Am J Hosp Pharm. 1977;34(5):479–85.PubMed Bond WS. Toxic reactions and side effects of glucocorticoids in man. Am J Hosp Pharm. 1977;34(5):479–85.PubMed
5.
go back to reference Sitzia J, Huggins L. Side effects of cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) chemotherapy for breast cancer. Cancer Pract. 1998;6(1):13–21.CrossRef Sitzia J, Huggins L. Side effects of cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) chemotherapy for breast cancer. Cancer Pract. 1998;6(1):13–21.CrossRef
6.
go back to reference Quemeneur L, Michallet MC, Ferraro-Peyret C, Saint-Mezard P, Benetiere J, Ducluzeau MT, et al. Immunosuppressive antimetabolites inhibit induction of contact hypersensitivity while lymphoablative drugs also prevent its expression. Eur J Dermatol. 2003;13(6):540–7.PubMed Quemeneur L, Michallet MC, Ferraro-Peyret C, Saint-Mezard P, Benetiere J, Ducluzeau MT, et al. Immunosuppressive antimetabolites inhibit induction of contact hypersensitivity while lymphoablative drugs also prevent its expression. Eur J Dermatol. 2003;13(6):540–7.PubMed
7.
go back to reference Thitilertdecha P, Guy RH, Rowan MG. Characterisation of polyphenolic compounds in Clerodendrum petasites S. Moore and their potential for topical delivery through the skin. J Ethnopharmacol. 2014;154(2):400–7.CrossRef Thitilertdecha P, Guy RH, Rowan MG. Characterisation of polyphenolic compounds in Clerodendrum petasites S. Moore and their potential for topical delivery through the skin. J Ethnopharmacol. 2014;154(2):400–7.CrossRef
8.
go back to reference Srisook K, Srisook E, Nachaiyo W, Chan-In M, Thongbai J, Wongyoo K, et al. Bioassay-guided isolation and mechanistic action of anti-inflammatory agents from Clerodendrum inerme leaves. J Ethnopharmacol. 2015;165:94–102.CrossRef Srisook K, Srisook E, Nachaiyo W, Chan-In M, Thongbai J, Wongyoo K, et al. Bioassay-guided isolation and mechanistic action of anti-inflammatory agents from Clerodendrum inerme leaves. J Ethnopharmacol. 2015;165:94–102.CrossRef
9.
go back to reference Gil B, Sanz MJ, Terencio MC, Ferrandiz ML, Bustos G, Paya M, et al. Effects of flavonoids on Naja naja and human recombinant synovial phospholipases A2 and inflammatory responses in mice. Life Sci. 1994;54(20):PL333–8.CrossRef Gil B, Sanz MJ, Terencio MC, Ferrandiz ML, Bustos G, Paya M, et al. Effects of flavonoids on Naja naja and human recombinant synovial phospholipases A2 and inflammatory responses in mice. Life Sci. 1994;54(20):PL333–8.CrossRef
10.
go back to reference Akram M, Syed AS, Kim KA, Lee JS, Chang SY, Kim CY, et al. Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia plebeia and its active components. J Ethnopharmacol. 2015;174:322–30.CrossRef Akram M, Syed AS, Kim KA, Lee JS, Chang SY, Kim CY, et al. Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia plebeia and its active components. J Ethnopharmacol. 2015;174:322–30.CrossRef
11.
go back to reference Clavin M, Gorzalczany S, Macho A, Munoz E, Ferraro G, Acevedo C, et al. Anti-inflammatory activity of flavonoids from Eupatorium arnottianum. J Ethnopharmacol. 2007;112(3):585–9.CrossRef Clavin M, Gorzalczany S, Macho A, Munoz E, Ferraro G, Acevedo C, et al. Anti-inflammatory activity of flavonoids from Eupatorium arnottianum. J Ethnopharmacol. 2007;112(3):585–9.CrossRef
12.
go back to reference Cottiglia F, Casu L, Bonsignore L, Casu M, Floris C, Sosa S, et al. Topical anti-inflammatory activity of flavonoids and a new xanthone from Santolina insularis. Z Naturforsch C. 2005;60(1–2):63–6.CrossRef Cottiglia F, Casu L, Bonsignore L, Casu M, Floris C, Sosa S, et al. Topical anti-inflammatory activity of flavonoids and a new xanthone from Santolina insularis. Z Naturforsch C. 2005;60(1–2):63–6.CrossRef
13.
go back to reference Yin Y, Gong FY, Wu XX, Sun Y, Li YH, Chen T, et al. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J Ethnopharmacol. 2008;120(1):1–6.CrossRef Yin Y, Gong FY, Wu XX, Sun Y, Li YH, Chen T, et al. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J Ethnopharmacol. 2008;120(1):1–6.CrossRef
14.
go back to reference Chaiprasongsuk A, Lohakul J, Soontrapa K, Sampattavanich S, Akarasereenont P, Panich U. Activation of Nrf2 reduces UVA-mediated MMP-1 Upregulation via MAPK/AP-1 signaling cascades: the Photoprotective effects of Sulforaphane and Hispidulin. J Pharmacol Exp Thers. 2017;360(3):388–98.CrossRef Chaiprasongsuk A, Lohakul J, Soontrapa K, Sampattavanich S, Akarasereenont P, Panich U. Activation of Nrf2 reduces UVA-mediated MMP-1 Upregulation via MAPK/AP-1 signaling cascades: the Photoprotective effects of Sulforaphane and Hispidulin. J Pharmacol Exp Thers. 2017;360(3):388–98.CrossRef
15.
go back to reference Kim DE, Min KJ, Kim MJ, Kim SH, Kwon TK. Hispidulin Inhibits Mast Cell-Mediated Allergic Inflammation through Down-Regulation of Histamine Release and Inflammatory Cytokines. Molecules. 2019;24(11):E2131.CrossRef Kim DE, Min KJ, Kim MJ, Kim SH, Kwon TK. Hispidulin Inhibits Mast Cell-Mediated Allergic Inflammation through Down-Regulation of Histamine Release and Inflammatory Cytokines. Molecules. 2019;24(11):E2131.CrossRef
16.
go back to reference Nagamachi M, Sakata D, Kabashima K, Furuyashiki T, Murata T, Segi-Nishida E, et al. Facilitation of Th1-mediated immune response by prostaglandin E receptor EP1. J Exp Med. 2007;204(12):2865–74.CrossRef Nagamachi M, Sakata D, Kabashima K, Furuyashiki T, Murata T, Segi-Nishida E, et al. Facilitation of Th1-mediated immune response by prostaglandin E receptor EP1. J Exp Med. 2007;204(12):2865–74.CrossRef
17.
go back to reference Thitilertdecha P, Rowan MG, Guy RH. Topical formulation and dermal delivery of active phenolic compounds in the Thai medicinal plant - Clerodendrum petasites S. Moore Int J Pharm. 2015;478(1):39–45.CrossRef Thitilertdecha P, Rowan MG, Guy RH. Topical formulation and dermal delivery of active phenolic compounds in the Thai medicinal plant - Clerodendrum petasites S. Moore Int J Pharm. 2015;478(1):39–45.CrossRef
Metadata
Title
Immunosuppressive effect of hispidulin in allergic contact dermatitis
Authors
Premrutai Thitilertdecha
Panwadee Pluangnooch
Sunita Timalsena
Kitipong Soontrapa
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2689-z

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue