Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Escherichia Coli | Research article

Microbial population dynamics under microdoses of the essential oil arborvitae

Authors: Rhegan C. McGregor, Kory A. Parker, Jacob M. Hornby, Leigh C. Latta IV

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

With the current concern caused by drug resistant microorganisms, alternatives to traditional antimicrobials are increasingly necessary. Historical holistic treatments involving natural approaches are now of interest as a potential alternative. Many essential oils have antimicrobial properties with the ability to modify bacterial and fungal population dynamics in low concentrations.

Methods

In this study, bacterial and fungal growth in response to varying concentrations of arborvitae oil was assessed using spectrophotometric methods to obtain estimates of population growth parameters including carrying capacity (K) and intrinsic rate of growth (r). Estimates of these parameters were compared among doses within strains using general linear modeling.

Results

Results suggest the active component of the essential oil arborvitae is likely of hydrophilic nature and demonstrates the ability to influence both K and r during bacterial and fungal growth in a dose-dependent manner. Highly concentrated doses of arborvitae completely kill Escherichia coli and significantly inhibit Staphylococcus aureus, however these same doses have no effect on Pseudomonas aeruginosa. Accordingly, microdoses of arborvitae demonstrated the ability to inhibit population growth parameters in both prokaryotic and eukaryotic microorganisms. Specifically, K of E. coli, r of Candida auris, and both K and r of Candida albicans were significantly reduced in the presence of microdoses of arborvitae.

Conclusions

Microdoses of essential oils have the ability to inhibit one or both population parameters in both prokaryotic and eukaryotic microorganisms. Some microorganisms appear to be more susceptible to this essential oil arborvitae than other microorganisms. The use of essential oils, such as arborvitae, as novel antimicrobials may prove useful when contending with the current epidemic of multidrug resistant pathogens.
Appendix
Available only for authorised users
Literature
1.
go back to reference Martens E, Demain AL. The antibiotic resistance crisis, with a focus on the United States. J Antibiot. 2017;70:520–6.CrossRef Martens E, Demain AL. The antibiotic resistance crisis, with a focus on the United States. J Antibiot. 2017;70:520–6.CrossRef
2.
go back to reference Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260–71.CrossRef Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260–71.CrossRef
3.
go back to reference Gullberg E, Cao S, Berg O, Ilbäck C, Sandegren L, Hughes D, Andersson D. Selection of resistant Bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7:1–9.CrossRef Gullberg E, Cao S, Berg O, Ilbäck C, Sandegren L, Hughes D, Andersson D. Selection of resistant Bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7:1–9.CrossRef
4.
go back to reference Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother. 2000;44:1771–7.CrossRef Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother. 2000;44:1771–7.CrossRef
5.
go back to reference Hongan L, Miller SF, Strauss C, Chaoxian Z, Lei C, Zhiqiang Y, Griffin K, Te R, Heewook L, Chi-Chun C, Lynch M. Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc Natl Acad Sci U S A. 2016;113:E2498–505.CrossRef Hongan L, Miller SF, Strauss C, Chaoxian Z, Lei C, Zhiqiang Y, Griffin K, Te R, Heewook L, Chi-Chun C, Lynch M. Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc Natl Acad Sci U S A. 2016;113:E2498–505.CrossRef
6.
go back to reference Oliver A, Mena A. Bacterial Hypermutation in cystic fibrosis, not only for antibiotic resistance. Clin Microbiol Infect. 2010;16:798–808.CrossRef Oliver A, Mena A. Bacterial Hypermutation in cystic fibrosis, not only for antibiotic resistance. Clin Microbiol Infect. 2010;16:798–808.CrossRef
7.
go back to reference Baser KHC. Buchbauer G. Science, Technology and Applications: Handbook of Essential Oils; 2010. Baser KHC. Buchbauer G. Science, Technology and Applications: Handbook of Essential Oils; 2010.
8.
go back to reference Han X, Parker TL. Arborvitae (Thuja Plicata) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts. Biochimie Open. 2017;4:56–60.CrossRef Han X, Parker TL. Arborvitae (Thuja Plicata) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts. Biochimie Open. 2017;4:56–60.CrossRef
9.
go back to reference Matan N, Rimkeeree H, Mawson AJ, Chompreeda P, Haruthaithanasan P, Parker M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int J Food Microbiol. 2006;107:180–5.CrossRef Matan N, Rimkeeree H, Mawson AJ, Chompreeda P, Haruthaithanasan P, Parker M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int J Food Microbiol. 2006;107:180–5.CrossRef
10.
go back to reference Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006;6:39.CrossRef Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006;6:39.CrossRef
11.
go back to reference Raja SA, Ashraf M, Anjum AA, Javeed A, Ijaz T, Attiq A. Antibacterial activity of essential oils extracted from medicinal plants against multi-drug resistant Staphylococcus Aureus. JAPS: J Animal Plant Sci. 2016;26:415–23. Raja SA, Ashraf M, Anjum AA, Javeed A, Ijaz T, Attiq A. Antibacterial activity of essential oils extracted from medicinal plants against multi-drug resistant Staphylococcus Aureus. JAPS: J Animal Plant Sci. 2016;26:415–23.
12.
go back to reference Cimanga K, Kambu K, Tona L, Apers S, De Bruyne T, Hermans N, Totté J, Pieters L, Vlietinck AJ. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol. 2002;79:213–20.CrossRef Cimanga K, Kambu K, Tona L, Apers S, De Bruyne T, Hermans N, Totté J, Pieters L, Vlietinck AJ. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol. 2002;79:213–20.CrossRef
13.
go back to reference Li L, Li ZW, Yin ZQ, Wei Q, Jia RY, Zhou LJ, Xu J, Song X, Zhou Y, Du YH, Peng LC, Kang S, Yu W. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum Longepaniculatum. Int J Clin Exp Med. 2014;7:1721–7.PubMedPubMedCentral Li L, Li ZW, Yin ZQ, Wei Q, Jia RY, Zhou LJ, Xu J, Song X, Zhou Y, Du YH, Peng LC, Kang S, Yu W. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum Longepaniculatum. Int J Clin Exp Med. 2014;7:1721–7.PubMedPubMedCentral
14.
15.
go back to reference Guleria S, Kumar A, Tiku AK. Chemical composition and Fungitoxic activity of essential oil of Thuja Orientalis L. grown in the North-Western Himalaya. Zeitschrift für Naturforschung C. 2008;63:211–4.CrossRef Guleria S, Kumar A, Tiku AK. Chemical composition and Fungitoxic activity of essential oil of Thuja Orientalis L. grown in the North-Western Himalaya. Zeitschrift für Naturforschung C. 2008;63:211–4.CrossRef
16.
go back to reference Tsiri D, Graikou K, Pobłocka-Olech L, KrauzeBaranowska M, Spyropoulos C, Chinou I. Chemosystematic value of the essential oil composition of Thuja species cultivated in Poland-antimicrobial activity. Molecules. 2009;14:4707–15.CrossRef Tsiri D, Graikou K, Pobłocka-Olech L, KrauzeBaranowska M, Spyropoulos C, Chinou I. Chemosystematic value of the essential oil composition of Thuja species cultivated in Poland-antimicrobial activity. Molecules. 2009;14:4707–15.CrossRef
17.
go back to reference Hudson J, Kuo M, Vimalanathan S. The antimicrobial properties of cedar leaf (Thuja Plicata) oil; a safe and efficient decontamination agent for buildings. Int J Environ Res Public Health. 2011;8:4477–87.CrossRef Hudson J, Kuo M, Vimalanathan S. The antimicrobial properties of cedar leaf (Thuja Plicata) oil; a safe and efficient decontamination agent for buildings. Int J Environ Res Public Health. 2011;8:4477–87.CrossRef
18.
go back to reference Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67:2982–92.CrossRef Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67:2982–92.CrossRef
19.
go back to reference R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.
20.
go back to reference Ishii S, Sadowsky MJ. Escherichia Coli in the environment: implications for water quality and human health. Microbes Environ. 2008;23:101–8.CrossRef Ishii S, Sadowsky MJ. Escherichia Coli in the environment: implications for water quality and human health. Microbes Environ. 2008;23:101–8.CrossRef
21.
go back to reference Hancock REW, Brinkman FSL. Function of Pseudomonas Porins in uptake and efflux. Annu Rev Microbiol. 2002;56:7–38.CrossRef Hancock REW, Brinkman FSL. Function of Pseudomonas Porins in uptake and efflux. Annu Rev Microbiol. 2002;56:7–38.CrossRef
22.
go back to reference Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, vol. 22: American Society for Microbiology; 2009. p. 582–610. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, vol. 22: American Society for Microbiology; 2009. p. 582–610.
23.
go back to reference Sedwick C. Pseudomonas Doesn’t mind a dunking. J Gen Physiol. 2017;149:531.CrossRef Sedwick C. Pseudomonas Doesn’t mind a dunking. J Gen Physiol. 2017;149:531.CrossRef
24.
go back to reference Knobloch K, Pauli A, Iberl B, Weigand H, Weis N. Antibacterial and antifungal properties of essential oil components. J Essent Oil Res. 1988;1:119–28.CrossRef Knobloch K, Pauli A, Iberl B, Weigand H, Weis N. Antibacterial and antifungal properties of essential oil components. J Essent Oil Res. 1988;1:119–28.CrossRef
25.
go back to reference Yap PSX, Yiap BC, Ping HC, Lim SHE. Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal. 2014;8:6–14.CrossRef Yap PSX, Yiap BC, Ping HC, Lim SHE. Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal. 2014;8:6–14.CrossRef
Metadata
Title
Microbial population dynamics under microdoses of the essential oil arborvitae
Authors
Rhegan C. McGregor
Kory A. Parker
Jacob M. Hornby
Leigh C. Latta IV
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2666-6

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue