Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

Withania somnifera (L.) Dunal ameliorates neurodegeneration and cognitive impairments associated with systemic inflammation

Authors: Muskan Gupta, Gurcharan Kaur

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Systemic inflammation driven neuroinflammation is an event which correlates with pathogenesis of several neurodegenerative diseases. Therefore, targeting peripheral and central inflammation simultaneously could be a promising approach for the management of these diseases. Nowadays, herbal medicines are emerging as potent therapeutics against various brain pathologies. Therefore, in this contemporary study, the neuroprotective activity of Ashwagandha (Withania somnifera) was elucidated against the inflammation associated neurodegeneration and cognitive impairments induced by systemic LPS administration using in vivo rat model system.

Methods

To achieve this aim, young adult wistar strain male albino rats were randomized into four groups: (i) Control, (ii) LPS alone, (iii) LPS + ASH-WEX, (iv) ASH-WEX alone. Post regimen, the animals were subjected to Rotarod, Narrow Beam Walking and Novel Object Recognition test to analyze their neuromuscular coordination, working memory and learning functions. The rats were then sacrificed to isolate the brain regions and expression of proteins associated with synaptic plasticity and cell survival was studied using Western blotting and Quantitative real time PCR. Further, neuroprotective potential of ASH-WEX and its active fraction (FIV) against inflammatory neurodegeneration was studied and validated using in vitro model system of microglial conditioned medium–treated neuronal cultures and microglial-neuronal co-cultures.

Results

Orally administered ASH-WEX significantly suppressed the cognitive and motor-coordination impairments in rats. On the molecular basis, ASH-WEX supplementation also regulated the expression of various proteins involved in synaptic plasticity and neuronal cell survival. Since microglial-neuronal crosstalk is crucial for maintaining CNS homeostasis, the current study was further extended to ascertain whether LPS–mediated microglial activation caused damage to neurons via direct cell to cell contact or through secretion of inflammatory mediators. ASH-WEX and FIV pretreatment was found to restore neurite outgrowth and protect neurons from apoptotic cell death caused by LPS-induced neuroinflammation in both activated microglial conditioned medium–treated neuronal cultures as well as microglial-neuronal co-cultures.

Conclusion

This extensive study using in vivo and in vitro model systems provides first ever pre-clinical evidence that ASH-WEX can be used as a promising natural therapeutic remedial for the prevention of neurodegeneration and cognitive impairments associated with peripheral inflammation and neuroinflammation.
Literature
1.
go back to reference Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA. Neuroinflammation and synaptic loss. Neurochem Res. 2012;37:903–10.CrossRef Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA. Neuroinflammation and synaptic loss. Neurochem Res. 2012;37:903–10.CrossRef
2.
go back to reference Herrera AJ, Espinosa-Oliva AM, Oliva-Martin MJ, Carrillo-Jimenez A, Venero JL, de Pablos RM. Collateral damage: contribution of peripheral inflammation to neurodegenerative diseases. Curr Top Med Chem. 2015;15:2193–210.CrossRef Herrera AJ, Espinosa-Oliva AM, Oliva-Martin MJ, Carrillo-Jimenez A, Venero JL, de Pablos RM. Collateral damage: contribution of peripheral inflammation to neurodegenerative diseases. Curr Top Med Chem. 2015;15:2193–210.CrossRef
3.
go back to reference Catorce MN, Gevorkian G. LPS-induced murine neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr Neuropharmacol. 2016;14:155–64.CrossRef Catorce MN, Gevorkian G. LPS-induced murine neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr Neuropharmacol. 2016;14:155–64.CrossRef
4.
go back to reference Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120:277–86.CrossRef Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120:277–86.CrossRef
5.
go back to reference Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7:354–65.CrossRef Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7:354–65.CrossRef
6.
go back to reference Besedovsky HO, del Rey A. Central and peripheral cytokines mediate immune-brain connectivity. Neurochem Res. 2011;36:1–6.CrossRef Besedovsky HO, del Rey A. Central and peripheral cytokines mediate immune-brain connectivity. Neurochem Res. 2011;36:1–6.CrossRef
7.
go back to reference Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69.CrossRef Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69.CrossRef
8.
go back to reference Brown GC. Vilalta A (2015) How microglia kill neurons. Brain Res. 1628;2015:288–97. Brown GC. Vilalta A (2015) How microglia kill neurons. Brain Res. 1628;2015:288–97.
9.
go back to reference Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Sävman K, Mallard C. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun. 2013;32:70–85.CrossRef Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Sävman K, Mallard C. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun. 2013;32:70–85.CrossRef
10.
go back to reference Biber K, Owens T, Boddeke E. What is microglia neurotoxicity (not)? Glia. 2014;62:841–54.CrossRef Biber K, Owens T, Boddeke E. What is microglia neurotoxicity (not)? Glia. 2014;62:841–54.CrossRef
11.
go back to reference Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100:13632–7.CrossRef Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100:13632–7.CrossRef
12.
go back to reference Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–5.CrossRef Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–5.CrossRef
13.
go back to reference Belarbi K, Arellano C, Ferguson R, Jopson T, Rosi S. Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain Behav Immun. 2012;26:18–23.CrossRef Belarbi K, Arellano C, Ferguson R, Jopson T, Rosi S. Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain Behav Immun. 2012;26:18–23.CrossRef
14.
go back to reference Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med. 2011;8. Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med. 2011;8.
15.
go back to reference Ven Murthy MR, Ranjekar.P K, Ramassamy C, Deshpande M. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: 1. Ashwagandha. Cent Nerv Syst Agents Med Chem. 2010;10:238–46.CrossRef Ven Murthy MR, Ranjekar.P K, Ramassamy C, Deshpande M. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: 1. Ashwagandha. Cent Nerv Syst Agents Med Chem. 2010;10:238–46.CrossRef
16.
go back to reference Patel P, Julien JP, Kriz J. Early-stage treatment with Withaferin a reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12:217–33.CrossRef Patel P, Julien JP, Kriz J. Early-stage treatment with Withaferin a reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12:217–33.CrossRef
17.
go back to reference Yan X, Huang G, Liu Q, Zheng J, Chen H, Huang Q, Chen J, Huang H. Withaferin a protects against spinal cord injury by inhibiting apoptosis and inflammation in mice. Pharm Biol. 2017;55:1171–6.CrossRef Yan X, Huang G, Liu Q, Zheng J, Chen H, Huang Q, Chen J, Huang H. Withaferin a protects against spinal cord injury by inhibiting apoptosis and inflammation in mice. Pharm Biol. 2017;55:1171–6.CrossRef
19.
go back to reference Tohda C, Kuboyama T, Komatsu K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport. 2000;11:1981–5.CrossRef Tohda C, Kuboyama T, Komatsu K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport. 2000;11:1981–5.CrossRef
20.
go back to reference Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K. Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull. 2002;50:760–5.CrossRef Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K. Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull. 2002;50:760–5.CrossRef
21.
go back to reference Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M. The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: An analysis of behavioral and biochemical varibles. Cell Mol Biol Lett. 2007;12:473.CrossRef Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M. The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: An analysis of behavioral and biochemical varibles. Cell Mol Biol Lett. 2007;12:473.CrossRef
22.
go back to reference Kurapati KRV, Atluri VSR, Samikkannu T, Nair MP. Ashwagandha (Withania somnifera) reverses β-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One. 2013;8:e77624.CrossRef Kurapati KRV, Atluri VSR, Samikkannu T, Nair MP. Ashwagandha (Withania somnifera) reverses β-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One. 2013;8:e77624.CrossRef
23.
go back to reference Kurapati KRV, Samikkannu T, Atluri VSR, Kaftanovskaya E, Yndart A, Nair MP. β-Amyloid1–42, HIV-1Ba-L (Clade B) infection and drugs of abuse induced degeneration in human neuronal cells and protective effects of Ashwagandha (Withania somnifera) and its constituent Withanolide A. PLoS One. 2014;(9):e112818.CrossRef Kurapati KRV, Samikkannu T, Atluri VSR, Kaftanovskaya E, Yndart A, Nair MP. β-Amyloid1–42, HIV-1Ba-L (Clade B) infection and drugs of abuse induced degeneration in human neuronal cells and protective effects of Ashwagandha (Withania somnifera) and its constituent Withanolide A. PLoS One. 2014;(9):e112818.CrossRef
24.
go back to reference Prakash J, Yadav SK, Chouhan S, Singh SP. Neuroprotective role of Withania somnifera root extract in Maneb–Paraquat induced mouse model of parkinsonism. Neurochem Res. 2013;38:972–80.CrossRef Prakash J, Yadav SK, Chouhan S, Singh SP. Neuroprotective role of Withania somnifera root extract in Maneb–Paraquat induced mouse model of parkinsonism. Neurochem Res. 2013;38:972–80.CrossRef
25.
go back to reference Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN, Singh SP. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res. 2014;39:2527–36.CrossRef Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN, Singh SP. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res. 2014;39:2527–36.CrossRef
26.
go back to reference Manjunath MJ. Muralidhara. Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster. J Food Sci Technol. 2015;52:1971–81.CrossRef Manjunath MJ. Muralidhara. Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster. J Food Sci Technol. 2015;52:1971–81.CrossRef
27.
go back to reference Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J Neuroinflammation. 2016;13:193.CrossRef Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J Neuroinflammation. 2016;13:193.CrossRef
28.
go back to reference Gupta M, Kaur G. Withania somnifera as a potential anxiolytic and anti-inflammatory candidate against systemic lipopolysaccharide-induced Neuroinflammation. NeuroMolecular Med. 2018;20:343–62.CrossRef Gupta M, Kaur G. Withania somnifera as a potential anxiolytic and anti-inflammatory candidate against systemic lipopolysaccharide-induced Neuroinflammation. NeuroMolecular Med. 2018;20:343–62.CrossRef
29.
go back to reference Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004;500:399–411.CrossRef Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004;500:399–411.CrossRef
30.
go back to reference Cunningham C, Campion S, Lunnon K, Murray CL, Woods JFC, Deacon RMJ, Rawlins JNP, Perry VH. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009;65:304–12.CrossRef Cunningham C, Campion S, Lunnon K, Murray CL, Woods JFC, Deacon RMJ, Rawlins JNP, Perry VH. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009;65:304–12.CrossRef
31.
go back to reference Kataria H, Kumar S, Chaudhary H, Kaur G. Withania somnifera suppresses tumor growth of intracranial allograft of glioma cells. Mol Neurobiol. 2016;53:4143–58.CrossRef Kataria H, Kumar S, Chaudhary H, Kaur G. Withania somnifera suppresses tumor growth of intracranial allograft of glioma cells. Mol Neurobiol. 2016;53:4143–58.CrossRef
32.
go back to reference Manchanda S, Mishra R, Singh R, Kaur T, Kaur G. Aqueous leaf extract of Withania somnifera as a potential neuroprotective agent in sleep-deprived rats: a mechanistic study. Mol Neurobiol. 2017;54:3050–61.CrossRef Manchanda S, Mishra R, Singh R, Kaur T, Kaur G. Aqueous leaf extract of Withania somnifera as a potential neuroprotective agent in sleep-deprived rats: a mechanistic study. Mol Neurobiol. 2017;54:3050–61.CrossRef
33.
go back to reference Kaur T, Singh H, Mishra R, Manchanda S, Gupta M, Saini V, Sharma A, Kaur G. Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats. Mol Cell Biochem. 2017;427:91–101.CrossRef Kaur T, Singh H, Mishra R, Manchanda S, Gupta M, Saini V, Sharma A, Kaur G. Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats. Mol Cell Biochem. 2017;427:91–101.CrossRef
34.
go back to reference Goldstein LB, Davis JN. Beam-walking in rats: studies towards developing an animal model of functional recovery after brain injury. J Neurosci Methods. 1990;31:101–7.CrossRef Goldstein LB, Davis JN. Beam-walking in rats: studies towards developing an animal model of functional recovery after brain injury. J Neurosci Methods. 1990;31:101–7.CrossRef
35.
go back to reference Manchanda S, Kaur G. Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC Complement Altern Med. 2017;17:136.CrossRef Manchanda S, Kaur G. Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC Complement Altern Med. 2017;17:136.CrossRef
36.
go back to reference Ha JS, Yeom YS, Jang JH, Kim YH, Im JI, Kim IS, Yang SJ. Anti-inflammatory effects of metformin on neuro-inflammation and NLRP3 Inflammasome activation in BV-2 microglial cells. Biomed Sci Letters. 2019;25:92–8.CrossRef Ha JS, Yeom YS, Jang JH, Kim YH, Im JI, Kim IS, Yang SJ. Anti-inflammatory effects of metformin on neuro-inflammation and NLRP3 Inflammasome activation in BV-2 microglial cells. Biomed Sci Letters. 2019;25:92–8.CrossRef
37.
go back to reference Yang Y, Liu X, Wu T, Zhang W, Shu J, He Y, Tang SJ. Quercetin attenuates AZT-induced neuroinflammation in the CNS. Sci Rep. 2018;8:6194.CrossRef Yang Y, Liu X, Wu T, Zhang W, Shu J, He Y, Tang SJ. Quercetin attenuates AZT-induced neuroinflammation in the CNS. Sci Rep. 2018;8:6194.CrossRef
38.
go back to reference Park T, Chen H, Kevala K, Lee JW, Kim HY. N-Docosahexaenoylethanolamine ameliorates LPS-induced neuroinflammation via cAMP/PKA-dependent signaling. J Neuroinflammation. 2016;13:284.CrossRef Park T, Chen H, Kevala K, Lee JW, Kim HY. N-Docosahexaenoylethanolamine ameliorates LPS-induced neuroinflammation via cAMP/PKA-dependent signaling. J Neuroinflammation. 2016;13:284.CrossRef
39.
go back to reference Fang Y, Yan J, Li C, Zhou X, Yao L, Pang T, Yan M, Zhnag L, Mao L, Liao H. The Nogo/Nogo receptor (NgR) signal is involved in neuroinflammation through the regulation of microglial inflammatory activation. J Biol Chem. 2015;290:28901–14.CrossRef Fang Y, Yan J, Li C, Zhou X, Yao L, Pang T, Yan M, Zhnag L, Mao L, Liao H. The Nogo/Nogo receptor (NgR) signal is involved in neuroinflammation through the regulation of microglial inflammatory activation. J Biol Chem. 2015;290:28901–14.CrossRef
40.
go back to reference Yang HL, Huang PJ, Liu YR, Kumar KJS, Hsu LS, Lu TL, Chia YC, Takajo T, Kazuroni A, Hseu YC. Toona sinensis inhibits LPS-induced inflammation and migration in vascular smooth muscle cells via suppression of reactive oxygen species and NF-B signaling pathway. Oxidative Med Cell Longev. 2014;2014. Yang HL, Huang PJ, Liu YR, Kumar KJS, Hsu LS, Lu TL, Chia YC, Takajo T, Kazuroni A, Hseu YC. Toona sinensis inhibits LPS-induced inflammation and migration in vascular smooth muscle cells via suppression of reactive oxygen species and NF-B signaling pathway. Oxidative Med Cell Longev. 2014;2014.
41.
go back to reference Qi FY, Yang L, Tian Z, Zhao MG, Liu SB, An JZ. Neuroprotective effects of Asiaticoside. Neural Regen Res. 2014;9:1275.CrossRef Qi FY, Yang L, Tian Z, Zhao MG, Liu SB, An JZ. Neuroprotective effects of Asiaticoside. Neural Regen Res. 2014;9:1275.CrossRef
42.
go back to reference Jang JY, Choi YW, Kim HN, Kim YR, Hong JW, Bae DW, Park SJ, Shin HK, Choi BT. Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from Uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model. PLoS One. 2014;9:e85322.CrossRef Jang JY, Choi YW, Kim HN, Kim YR, Hong JW, Bae DW, Park SJ, Shin HK, Choi BT. Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from Uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model. PLoS One. 2014;9:e85322.CrossRef
43.
go back to reference Yang BIN, Jain S, Pawluczyk IZ, Imtiaz S, Bowley LEE, Ashra SY, Nicholson ML. Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int. 2005;68:2050–67.CrossRef Yang BIN, Jain S, Pawluczyk IZ, Imtiaz S, Bowley LEE, Ashra SY, Nicholson ML. Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int. 2005;68:2050–67.CrossRef
44.
go back to reference Mishra R, Manchanda S, Gupta M, Kaur T, Saini V, Sharma A, Kaur, G. (2016). Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci rep. 2016;6:25564. Mishra R, Manchanda S, Gupta M, Kaur T, Saini V, Sharma A, Kaur, G. (2016). Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci rep. 2016;6:25564.
45.
go back to reference Saura J, Tusell JM, Serratosa J. High-yield isolation of murine microglia by mild trypsinization. Glia. 2003;44:183–9.CrossRef Saura J, Tusell JM, Serratosa J. High-yield isolation of murine microglia by mild trypsinization. Glia. 2003;44:183–9.CrossRef
46.
go back to reference Frandsen A, Schousboe A. Development of excitatory amino acid induced cytotoxicity in cultured neurons. Int J Dev Neurosci. 1990;8:209–16.CrossRef Frandsen A, Schousboe A. Development of excitatory amino acid induced cytotoxicity in cultured neurons. Int J Dev Neurosci. 1990;8:209–16.CrossRef
47.
go back to reference Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21:153–60.CrossRef Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21:153–60.CrossRef
48.
go back to reference Spruijt BV, Van Hooff JA, Gispen WH. Ethology and neurobiology of grooming behavior. Physiol Rev. 1992;72:825–52.CrossRef Spruijt BV, Van Hooff JA, Gispen WH. Ethology and neurobiology of grooming behavior. Physiol Rev. 1992;72:825–52.CrossRef
49.
go back to reference Bolles RC. Grooming behavior in the rat. J Comp Physiol Psychol. 1960;53:306.CrossRef Bolles RC. Grooming behavior in the rat. J Comp Physiol Psychol. 1960;53:306.CrossRef
50.
go back to reference Kulikov AV, Tikhonova MA, Kulikova EA, Kulikov VA, Popova NK. Novel approach to the study of fur cleaning in inbred mice: effects of genotype, stress, and lipopolysaccharide. ILAR J. 2010;51:E11–6.CrossRef Kulikov AV, Tikhonova MA, Kulikova EA, Kulikov VA, Popova NK. Novel approach to the study of fur cleaning in inbred mice: effects of genotype, stress, and lipopolysaccharide. ILAR J. 2010;51:E11–6.CrossRef
51.
go back to reference Lever C, Burton S, Ο'Keefe J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci. 2006;17:111–34.CrossRef Lever C, Burton S, Ο'Keefe J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci. 2006;17:111–34.CrossRef
52.
go back to reference Parihar MS, Chaudhary M, Shetty R, Hemnani T. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci. 2004;11:397–402.CrossRef Parihar MS, Chaudhary M, Shetty R, Hemnani T. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci. 2004;11:397–402.CrossRef
53.
go back to reference Kaur T, Kaur G. Withania somnifera as a potential candidate to ameliorate high fat diet-induced anxiety and neuroinflammation. J Neuroinflammation. 2017;14:201.CrossRef Kaur T, Kaur G. Withania somnifera as a potential candidate to ameliorate high fat diet-induced anxiety and neuroinflammation. J Neuroinflammation. 2017;14:201.CrossRef
54.
go back to reference Pham K, Nacher J, Hof PR, McEwen BS. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci. 2003;17:879–86.CrossRef Pham K, Nacher J, Hof PR, McEwen BS. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci. 2003;17:879–86.CrossRef
55.
go back to reference Tsoory M, Guterman A, Richter-Levin G. Exposure to stressors during juvenility disrupts development-related alterations in the PSA-NCAM to NCAM expression ratio: potential relevance for mood and anxiety disorders. Neuropsychopharmacology. 2008;33:378.CrossRef Tsoory M, Guterman A, Richter-Levin G. Exposure to stressors during juvenility disrupts development-related alterations in the PSA-NCAM to NCAM expression ratio: potential relevance for mood and anxiety disorders. Neuropsychopharmacology. 2008;33:378.CrossRef
56.
go back to reference Menzel L, Paterka M, Bittner S, White R, Bobkiewicz W, van Horssen J, Schachner M, Witsch E, Kuhlmann T, Zipp F, Schäfer MK. Down-regulation of neuronal L1 cell adhesion molecule expression alleviates inflammatory neuronal injury. Acta Neuropathol. 2016;132:703–20.CrossRef Menzel L, Paterka M, Bittner S, White R, Bobkiewicz W, van Horssen J, Schachner M, Witsch E, Kuhlmann T, Zipp F, Schäfer MK. Down-regulation of neuronal L1 cell adhesion molecule expression alleviates inflammatory neuronal injury. Acta Neuropathol. 2016;132:703–20.CrossRef
57.
go back to reference Xia Z, Storm DR. The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci. 2005;6:267.CrossRef Xia Z, Storm DR. The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci. 2005;6:267.CrossRef
58.
go back to reference Zhang H, Wu L, Pchitskaya E, Zakharova O, Saito T, Saido T, Bezprozvanny I. Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer's disease. J Neurosci. 2015;35:13275–86.CrossRef Zhang H, Wu L, Pchitskaya E, Zakharova O, Saito T, Saido T, Bezprozvanny I. Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer's disease. J Neurosci. 2015;35:13275–86.CrossRef
59.
go back to reference Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, Thakur MK. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One. 2011;6:e27265.CrossRef Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, Thakur MK. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One. 2011;6:e27265.CrossRef
60.
go back to reference Gautam A, Wadhwa R, Thakur MK. Involvement of hippocampal arc in amnesia and its recovery by alcoholic extract of Ashwagandha leaves. Neurobiol Learn Mem. 2013;106:177–84.CrossRef Gautam A, Wadhwa R, Thakur MK. Involvement of hippocampal arc in amnesia and its recovery by alcoholic extract of Ashwagandha leaves. Neurobiol Learn Mem. 2013;106:177–84.CrossRef
61.
go back to reference Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol. 2010;70:304–22.PubMedPubMedCentral Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol. 2010;70:304–22.PubMedPubMedCentral
62.
go back to reference Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H. BDNF function and intracellular signaling in neurons. Histol Histopathol. 2010;25:237–58.PubMed Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H. BDNF function and intracellular signaling in neurons. Histol Histopathol. 2010;25:237–58.PubMed
63.
go back to reference Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.CrossRef Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.CrossRef
64.
go back to reference Yoshii A. Constantine-Paton M (2007) BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci. 2007;10:702.CrossRef Yoshii A. Constantine-Paton M (2007) BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci. 2007;10:702.CrossRef
65.
go back to reference Guan Z, Fang J. Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun. 2006;20:64–71.CrossRef Guan Z, Fang J. Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun. 2006;20:64–71.CrossRef
66.
go back to reference Hwang D, Vasquez I, Galvez L, Do H, Lopez de Santa Ana A. Ashwagandha and its active ingredient, withanolide A, increase activation of the phosphatidylinositol 3′-kinase/Akt cascade in hippocampal neurons. Eur J Med Plants. 2017;20:1–19.CrossRef Hwang D, Vasquez I, Galvez L, Do H, Lopez de Santa Ana A. Ashwagandha and its active ingredient, withanolide A, increase activation of the phosphatidylinositol 3′-kinase/Akt cascade in hippocampal neurons. Eur J Med Plants. 2017;20:1–19.CrossRef
67.
go back to reference Sanchez C, Dıaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP 2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol. 2000;61:133–68.CrossRef Sanchez C, Dıaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP 2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol. 2000;61:133–68.CrossRef
68.
go back to reference Brewster AL, Lugo JN, Patil VV, Lee WL, Qian Y, Vanegas F, Anderson AE. Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage. PLoS One. 2013;8:e57808.CrossRef Brewster AL, Lugo JN, Patil VV, Lee WL, Qian Y, Vanegas F, Anderson AE. Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage. PLoS One. 2013;8:e57808.CrossRef
69.
go back to reference Schartz ND, Herr SA, Madsen L, Butts SJ, Torres C, Mendez LB, Brewster AL. Spatiotemporal profile of map 2 and microglial changes in the hippocampal CA1 region following pilocarpine-induced status epilepticus. Sci Rep. 2016;6:24988.CrossRef Schartz ND, Herr SA, Madsen L, Butts SJ, Torres C, Mendez LB, Brewster AL. Spatiotemporal profile of map 2 and microglial changes in the hippocampal CA1 region following pilocarpine-induced status epilepticus. Sci Rep. 2016;6:24988.CrossRef
70.
go back to reference Saykally JN, Hatic H, Keeley KL, Jain SC, Ravindranath V, Citron BA. Withania somnifera extract protects model neurons from in vitro traumatic injury. Cell Transplant. 2017;26:1193–201.CrossRef Saykally JN, Hatic H, Keeley KL, Jain SC, Ravindranath V, Citron BA. Withania somnifera extract protects model neurons from in vitro traumatic injury. Cell Transplant. 2017;26:1193–201.CrossRef
71.
go back to reference Tohda C, Komatsu K, Kuboyama T. Scientific basis for the anti-dementia drugs of constituents from Ashwagandha (Withania somnifera). J Tradit Med. 2005;22:176–82. Tohda C, Komatsu K, Kuboyama T. Scientific basis for the anti-dementia drugs of constituents from Ashwagandha (Withania somnifera). J Tradit Med. 2005;22:176–82.
72.
go back to reference Kuboyama T, Tohda C, Komatsu K. Withanoside IV and its active metabolite, sominone, attenuate Aβ (25–35)-induced neurodegeneration. Eur J Neurosci. 2006;23:1417–26.CrossRef Kuboyama T, Tohda C, Komatsu K. Withanoside IV and its active metabolite, sominone, attenuate Aβ (25–35)-induced neurodegeneration. Eur J Neurosci. 2006;23:1417–26.CrossRef
73.
go back to reference Dar NJ, Bhat JA, Satti NK, Sharma PR, Hamid A, Ahmad M. Withanone, an active constituent from Withania somnifera, affords protection against NMDA-induced excitotoxicity in neuron-like cells. Mol Neurobiol. 2017;54:5061–73.CrossRef Dar NJ, Bhat JA, Satti NK, Sharma PR, Hamid A, Ahmad M. Withanone, an active constituent from Withania somnifera, affords protection against NMDA-induced excitotoxicity in neuron-like cells. Mol Neurobiol. 2017;54:5061–73.CrossRef
74.
go back to reference Clarke DJ, Branton RL. A role for tumor necrosis factor α in death of dopaminergic neurons following neural transplantation. Exp Neurol. 2002;176:154–62.CrossRef Clarke DJ, Branton RL. A role for tumor necrosis factor α in death of dopaminergic neurons following neural transplantation. Exp Neurol. 2002;176:154–62.CrossRef
75.
go back to reference Allan SM. Varied actions of proinflammatory cytokines on excitotoxic cell death in the rat central nervous system. J Neurosci Res. 2002;67:428–34.CrossRef Allan SM. Varied actions of proinflammatory cytokines on excitotoxic cell death in the rat central nervous system. J Neurosci Res. 2002;67:428–34.CrossRef
76.
go back to reference Mizuno T. Neuron–microglia interactions in neuroinflammation. Clin Exp Neuroimmunol. 2015;6:225–31.CrossRef Mizuno T. Neuron–microglia interactions in neuroinflammation. Clin Exp Neuroimmunol. 2015;6:225–31.CrossRef
77.
go back to reference Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science. 2000;290:1768–71.CrossRef Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science. 2000;290:1768–71.CrossRef
78.
go back to reference Hernangómez M, Mestre L, Correa FG, Loría F, Mecha M, Iñigo PM, Docagne F, Williams RO, Borrell J, Guaza C. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia. 2012;60:1437–50.CrossRef Hernangómez M, Mestre L, Correa FG, Loría F, Mecha M, Iñigo PM, Docagne F, Williams RO, Borrell J, Guaza C. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia. 2012;60:1437–50.CrossRef
Metadata
Title
Withania somnifera (L.) Dunal ameliorates neurodegeneration and cognitive impairments associated with systemic inflammation
Authors
Muskan Gupta
Gurcharan Kaur
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2635-0

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue