Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Pharmacokinetics | Research article

Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats

Authors: Natthaphon Hunsakunachai, Nitra Nuengchamnong, Weena Jiratchariyakul, Tanawan Kummalue, Phisit Khemawoot

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Cucurbitacin B is the major bioactive constituent in Trichosanthes cucumerina L. fruits, which the pharmacological properties have been studied for decades particularly an anti-tumor activity. The pharmacokinetic profile of this compound is still limited and investigation is needed for further phytopharmaceutical product development. This study aimed to investigate the pharmacokinetic profile of cucurbitacin B after administering the compound at different doses and routes to rats.

Methods

Male Wistar rats (n = 6) were treated by cucurbitacin B extracted from Trichosanthes cucumerina L. The cucurbitacin B was administered at 0.1 mg/kg intravenously or by oral gavage at 2–4 mg/kg. Blood samples and internal organs were collected serially within 24 h after administration. Urine and feces were collected from time 0 to 48 h. The level of cucurbitacin B in biological samples was determined by liquid chromatography-tandem mass spectrometry.

Results

The absolute oral bioavailability of cucurbitacin B was approximately 10%. The maximum concentration in plasma after normalization by dose ranged from 4.85–7.81 μg/L and the time to reach maximum value was approximately within 30 min after oral dosing. The level of cucurbitacin B in plasma increased proportionally to the given dose. After intravenous administration, cucurbitacin B had a large volume of distribution of about 51.65 L/kg and exhibited a high tissue to plasma concentration ratio, approximately 60 to 280-fold in several organs. Negligible amount of unchanged cucurbitacin B could be detected in urine and feces and accounted less than 1% of administered dose.

Conclusion

Cucurbitacin B had low oral bioavailability, but could be distributed extensively into internal organs with a high volume of distribution and tissue to plasma ratio. Only negligible amounts of unchanged cucurbitacin B were excreted via urine and feces suggesting that the compound might be biotransformed before undergoing an excretion. Further studies of the metabolic pathway and tissue uptake mechanism are required to strategize the future development of cucurbitacin B into clinical studies.
Literature
1.
go back to reference Sandhya S, Vinod K, Sekhar JC, Aradhana R, Nath VS. An updated review on Trichosanthes cucumerina L. Int J Pharm Sci Rev Res. 2010;1:56–60. Sandhya S, Vinod K, Sekhar JC, Aradhana R, Nath VS. An updated review on Trichosanthes cucumerina L. Int J Pharm Sci Rev Res. 2010;1:56–60.
2.
go back to reference Nadkani K. Indian materia medica. Bombay: Popular Prakashan; 2002. Nadkani K. Indian materia medica. Bombay: Popular Prakashan; 2002.
3.
go back to reference Kaushik U, Aeri V, Mir SR. Cucurbitacins-an insight into medicinal leads from nature. Pharmacogn Rev. 2015;9:12–8.CrossRef Kaushik U, Aeri V, Mir SR. Cucurbitacins-an insight into medicinal leads from nature. Pharmacogn Rev. 2015;9:12–8.CrossRef
4.
go back to reference Cai Y, Fang X, He C, Li P, Xiao F, Wang Y, et al. Cucurbitacins: a systematic review of the phytochemistry and anticancer activity. Am J Chin Med. 2015;43:1331–50.CrossRef Cai Y, Fang X, He C, Li P, Xiao F, Wang Y, et al. Cucurbitacins: a systematic review of the phytochemistry and anticancer activity. Am J Chin Med. 2015;43:1331–50.CrossRef
5.
go back to reference Lee DH, Iwanski GB, Thoennissen NH. Cucurbitacin: ancient compound shedding new light on cancer treatment. Sci World J. 2010;10:413–8.CrossRef Lee DH, Iwanski GB, Thoennissen NH. Cucurbitacin: ancient compound shedding new light on cancer treatment. Sci World J. 2010;10:413–8.CrossRef
6.
go back to reference Peters RR, Farias MR, Ribeiro-do-Valle RM. Anti-inflammatory and analgesic effects of cucurbitacins from Wilbrandia ebracteata. Planta Med. 1997;63:525–8.CrossRef Peters RR, Farias MR, Ribeiro-do-Valle RM. Anti-inflammatory and analgesic effects of cucurbitacins from Wilbrandia ebracteata. Planta Med. 1997;63:525–8.CrossRef
7.
go back to reference Siqueira JM, Peters RR, Gazola AC, Krepsky PB, Farias MR, Rae GA, et al. Anti-inflammatory effects of a triterpenoid isolated from Wilbrandia ebracteata Cogn. Life Sci. 2007;80:1382–7.CrossRef Siqueira JM, Peters RR, Gazola AC, Krepsky PB, Farias MR, Rae GA, et al. Anti-inflammatory effects of a triterpenoid isolated from Wilbrandia ebracteata Cogn. Life Sci. 2007;80:1382–7.CrossRef
8.
go back to reference Yesilada E, Tanaka S, Sezik E, Tabata M. Isolation of an anti-inflammatory principle from the fruit juice of Ecballium elaterium. J Nat Prod. 1998;51:504–8.CrossRef Yesilada E, Tanaka S, Sezik E, Tabata M. Isolation of an anti-inflammatory principle from the fruit juice of Ecballium elaterium. J Nat Prod. 1998;51:504–8.CrossRef
9.
go back to reference Bernard SA, Olayinka OA. Search for a novel antioxidant, anti-inflammatory/analgesic or anti-proliferative drug: cucurbitacins hold the ace. J Med Plants Res. 2010;4:2821–6. Bernard SA, Olayinka OA. Search for a novel antioxidant, anti-inflammatory/analgesic or anti-proliferative drug: cucurbitacins hold the ace. J Med Plants Res. 2010;4:2821–6.
10.
go back to reference Miro M. Cucurbitacins and their pharmacological effects. Phytother Res. 1995;9:159–68.CrossRef Miro M. Cucurbitacins and their pharmacological effects. Phytother Res. 1995;9:159–68.CrossRef
11.
go back to reference Zhang M, Zhang H, Sun C, Shan X, Yang X, Li-Ling J, et al. Targeted constitutive activation of signal transducer and activator of transcription 3 in human hepatocellular carcinoma cells by cucurbitacin B. Cancer Chemoth Pharm. 2009;63:635–42.CrossRef Zhang M, Zhang H, Sun C, Shan X, Yang X, Li-Ling J, et al. Targeted constitutive activation of signal transducer and activator of transcription 3 in human hepatocellular carcinoma cells by cucurbitacin B. Cancer Chemoth Pharm. 2009;63:635–42.CrossRef
12.
go back to reference Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, et al. Targeting signal transducer and activator of transcription 3 for prevention and therapy of cancer. Ann N Y Acad Sci. 2006;1091:151–69.CrossRef Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, et al. Targeting signal transducer and activator of transcription 3 for prevention and therapy of cancer. Ann N Y Acad Sci. 2006;1091:151–69.CrossRef
13.
go back to reference Duangmano S, Dakeng S, Jiratchariyakul W, Suksamrarn A, Smith DR, Patmasiriwat P. Antiproliferative effects of cucurbitacin B in breast cancer cells: down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle. Int J Mol Sci. 2010;11:5323–38.CrossRef Duangmano S, Dakeng S, Jiratchariyakul W, Suksamrarn A, Smith DR, Patmasiriwat P. Antiproliferative effects of cucurbitacin B in breast cancer cells: down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle. Int J Mol Sci. 2010;11:5323–38.CrossRef
14.
go back to reference Wakimoto N, Yin D, O’Kelly J, Haritunians T, Karlan B, Said J, et al. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci. 2008;99:1793–7.CrossRef Wakimoto N, Yin D, O’Kelly J, Haritunians T, Karlan B, Said J, et al. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci. 2008;99:1793–7.CrossRef
15.
go back to reference Kausar H, Munagala R, Bansal SS, Aqil F, Vadhanam MV, Gupta RC. Cucurbitacin B potently suppresses non-small-cell lung cancer growth: identification of intracellular thiols as critical targets. Cancer Lett. 2013;332:35–45.CrossRef Kausar H, Munagala R, Bansal SS, Aqil F, Vadhanam MV, Gupta RC. Cucurbitacin B potently suppresses non-small-cell lung cancer growth: identification of intracellular thiols as critical targets. Cancer Lett. 2013;332:35–45.CrossRef
16.
go back to reference Zhao W, Xu D, Yan W, Wang Y, Zhang N. Development and validation of a UPLC-MS/MS method for the determination of cucurbitacin B in rat plasma and application to a pharmacokinetic study. Biomed Chromatogr. 2016;30:503–7.CrossRef Zhao W, Xu D, Yan W, Wang Y, Zhang N. Development and validation of a UPLC-MS/MS method for the determination of cucurbitacin B in rat plasma and application to a pharmacokinetic study. Biomed Chromatogr. 2016;30:503–7.CrossRef
17.
go back to reference Liu T, Zhang M, Zhang H, Sun C, Deng Y. Inhibitory effects of cucurbitacin B on laryngeal squamous cell carcinoma. Eur Arch Oto-Rhino-L. 2008;265:1225–32.CrossRef Liu T, Zhang M, Zhang H, Sun C, Deng Y. Inhibitory effects of cucurbitacin B on laryngeal squamous cell carcinoma. Eur Arch Oto-Rhino-L. 2008;265:1225–32.CrossRef
18.
go back to reference Iwanski GB, Lee DH, En-Gal S, Doan NB, Castor B, Vogt M, et al. Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer. Brit J Pharmacol. 2010;160:998–1007.CrossRef Iwanski GB, Lee DH, En-Gal S, Doan NB, Castor B, Vogt M, et al. Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer. Brit J Pharmacol. 2010;160:998–1007.CrossRef
19.
go back to reference U.S. food and drug administration. Guidance for industry: bioanalytical method validation. Washington DC: U.S. Department of Health and Human Services; 2018. U.S. food and drug administration. Guidance for industry: bioanalytical method validation. Washington DC: U.S. Department of Health and Human Services; 2018.
20.
go back to reference Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. Can Med Assoc J. 2005;172:367–79.CrossRef Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. Can Med Assoc J. 2005;172:367–79.CrossRef
21.
go back to reference Wang Z, Wenbo Z, Gao M, Wu Z, Yang C, Yang J, et al. Simultaneous determination of cucurbitacin B and cucurbitacin E in rat plasma by UHPLC-MS/MS: a pharmacokinetics study after oral administration of cucurbitacin tablets. J Chromatogr B. 2017;1065:63–9. Wang Z, Wenbo Z, Gao M, Wu Z, Yang C, Yang J, et al. Simultaneous determination of cucurbitacin B and cucurbitacin E in rat plasma by UHPLC-MS/MS: a pharmacokinetics study after oral administration of cucurbitacin tablets. J Chromatogr B. 2017;1065:63–9.
22.
go back to reference Gregory JG, Barrows CH. The effect of age on renal functions of female rats. J Gerontol. 1969;24:321–3.CrossRef Gregory JG, Barrows CH. The effect of age on renal functions of female rats. J Gerontol. 1969;24:321–3.CrossRef
23.
go back to reference Iwamoto K, Watanabe J, Araki K, Deguchi N, Sugiyama H. Effect of age on the hepatic clearance of propranolol in rats. J Pharm Pharmacol. 1985;37:466–70.CrossRef Iwamoto K, Watanabe J, Araki K, Deguchi N, Sugiyama H. Effect of age on the hepatic clearance of propranolol in rats. J Pharm Pharmacol. 1985;37:466–70.CrossRef
24.
go back to reference Boersen N, Lee T, Hui HW. Development of preclinical formulations for toxicology studies. In: Faqi AS, editor. A comprehensive guide to toxicology in preclinical drug development. London: Elsevier; 2013. p. 69–86.CrossRef Boersen N, Lee T, Hui HW. Development of preclinical formulations for toxicology studies. In: Faqi AS, editor. A comprehensive guide to toxicology in preclinical drug development. London: Elsevier; 2013. p. 69–86.CrossRef
25.
go back to reference Abbas S, Vincourt JB, Habib L, Netter P, Greige-Gerges H, Magdalou J. The cucurbitacins E, D and I: investigation of their cytotoxicity toward human chondrosarcoma SW 1353 cell line and their biotransformation in man liver. Toxicol Lett. 2013;216:189–99.CrossRef Abbas S, Vincourt JB, Habib L, Netter P, Greige-Gerges H, Magdalou J. The cucurbitacins E, D and I: investigation of their cytotoxicity toward human chondrosarcoma SW 1353 cell line and their biotransformation in man liver. Toxicol Lett. 2013;216:189–99.CrossRef
Metadata
Title
Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats
Authors
Natthaphon Hunsakunachai
Nitra Nuengchamnong
Weena Jiratchariyakul
Tanawan Kummalue
Phisit Khemawoot
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2568-7

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue