Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

Superoxide-producing lipoprotein fraction from Stevia leaves: definition of specific activity

Authors: A. S. Isoyan, K. V. Simonyan, R. M. Simonyan, M. A. Babayan, G. M. Simonyan, V. A. Chavushyan, M. A. Simonyan

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Stevia rebaudiana Bertoni has various pharmacological actions, which includes antidiabetic, antioxidant, anti-inflammatory activities. The superoxide and consequently NADPH oxidase (Nox) are relevant targets involved in biological effects of Stevia. The presence of NADPH-containing superoxide-producing lipoprotein (suprol) in Stevia leaves has not yet been tested. The mechanism of producing superoxide radicals (O2) by suprol was determined in vitro, which is associated with the electron transfer from NADPH in the composition of suprol by traces of transition metal ions (Fe3+ or Cu2+) to molecular oxygen, turning it into O2. It is expected that the therapeutic efficacy of Stevia leaves is caused by specific activity of superoxide-producing lipoprotein fraction.

Methods

For the first time, from the dry leaves of Stevia the NADPH-containing superoxide-producing lipoprotein was isolated and purified. The specific content of suprol (milligrams in 1 g of Stevia leaves- mg/g) was determined after desalination of suprol and lyophilization.

Results

According to the method provided, the specific content of the isolated suprol from Stevia’s leaves was up to 4.5 ± 0.2 mg / g (yields up to 68.5 ± 4.7%, p < 0.05, n = 6). Nox forms a stable complex with suprol. The optical absorption spectrum of the Nox-suprol complex represents the overlapping suprol and Nox spectra, with a certain background increase and characteristic features of optical absorption for Nox. Due to O2 producing capacity suprol-Nox complex discolors KMnO4 solutions, Coomassie brilliant blue, restores nitrotetrazolium blue to formazan and oxidizes epinephrine to adrenochrome. The oxidation activity of adrenaline is 50.3 ± 5.1 U / mg / ml (p < 0.05, n = 6).

Conclusion

Superoxide-producing lipoprotein fraction-Nox complex from Stevia leaves (membranes) can modulate redox regulated signaling pathways and may play a positive role in type-2 diabetes by means of adrenaline oxidation mechanism.
Literature
1.
go back to reference Ramesh K, Singh V, Megeji N. Cultivation of Stevia [Stevia rebaudiana (bert.) bertoni]: a comprehensive review. Adv Agron. 2006;89:137–77.CrossRef Ramesh K, Singh V, Megeji N. Cultivation of Stevia [Stevia rebaudiana (bert.) bertoni]: a comprehensive review. Adv Agron. 2006;89:137–77.CrossRef
2.
go back to reference Barreda VD, Palazzesi L, Telleria MC, Olivero EB, Raine JI, Forest F. Early evolution of the angiosperm clade asteraceae in the cretaceous of Antarctica. Proc Natl Acad Sci U S A. 2015;112(35):10989–94.CrossRef Barreda VD, Palazzesi L, Telleria MC, Olivero EB, Raine JI, Forest F. Early evolution of the angiosperm clade asteraceae in the cretaceous of Antarctica. Proc Natl Acad Sci U S A. 2015;112(35):10989–94.CrossRef
3.
go back to reference Simonyan MA, Karapetyan AV, Babayan MA, Simonyan RM. NADPH-containing superoxide-producing lipoprotein fraction of blood serum. Isolation, purification, brief characterization and mechanism of action. Biochem Mosc. 1996;61(5):932–8. Simonyan MA, Karapetyan AV, Babayan MA, Simonyan RM. NADPH-containing superoxide-producing lipoprotein fraction of blood serum. Isolation, purification, brief characterization and mechanism of action. Biochem Mosc. 1996;61(5):932–8.
4.
go back to reference Simonyan MA, Karapetyan AV, Galstyan DA, Simonyan RM, Babayan MA. Superoxide-producing lipoprotein (Suprol) as a factor that suppresses tumor growth, increases leukocyte count and accelerates proliferation of the cultured cells. Biochem Mosc. 1996;61(9):1578–83. Simonyan MA, Karapetyan AV, Galstyan DA, Simonyan RM, Babayan MA. Superoxide-producing lipoprotein (Suprol) as a factor that suppresses tumor growth, increases leukocyte count and accelerates proliferation of the cultured cells. Biochem Mosc. 1996;61(9):1578–83.
5.
go back to reference Alexanyan M.K., Simonyan G.M., Simonyan R.M., Arakelyan L.N., Alexanyan S.S., Simonyan M.A. Antitumor and antistressor effects of suprol injected to white rats at sarcoma-45. Med Sci Armenia. 2012;LII(3):23–35. Alexanyan M.K., Simonyan G.M., Simonyan R.M., Arakelyan L.N., Alexanyan S.S., Simonyan M.A. Antitumor and antistressor effects of suprol injected to white rats at sarcoma-45. Med Sci Armenia. 2012;LII(3):23–35.
6.
go back to reference Simonyan GM, Alexanyan MK, Simonyan RM, Khachatryan AR, Babayan MA, Alexanyan SS, Simonyan MA. New approaches for the autotherapy of cancer diseases in post-operational period. Issues Theor Clin Med. 2011;(4):3–7. Simonyan GM, Alexanyan MK, Simonyan RM, Khachatryan AR, Babayan MA, Alexanyan SS, Simonyan MA. New approaches for the autotherapy of cancer diseases in post-operational period. Issues Theor Clin Med. 2011;(4):3–7.
7.
go back to reference Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci. 2012;17(1):9–15.CrossRef Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci. 2012;17(1):9–15.CrossRef
8.
go back to reference Ruiz-Ruiz JC, Moguel-Ordoñez YB, Segura-Campos MR. Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit Rev Food Sci Nutr. 2017;57(12):2680–90.CrossRef Ruiz-Ruiz JC, Moguel-Ordoñez YB, Segura-Campos MR. Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit Rev Food Sci Nutr. 2017;57(12):2680–90.CrossRef
9.
go back to reference Chen TH, Chen SC, Chan P, Chu YL, Yang HY, Cheng JT. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med. 2005;71:108–13.CrossRef Chen TH, Chen SC, Chan P, Chu YL, Yang HY, Cheng JT. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med. 2005;71:108–13.CrossRef
10.
go back to reference Chang JC, Wu MC, Liu IM, Cheng JT. Increase of insulin sensitivity by stevioside in fructose-rich chow-fed rats. Horm Metab Res. 2005;37(10):610–6.CrossRef Chang JC, Wu MC, Liu IM, Cheng JT. Increase of insulin sensitivity by stevioside in fructose-rich chow-fed rats. Horm Metab Res. 2005;37(10):610–6.CrossRef
11.
go back to reference Shivanna N, Naika M, Khanum F, Kaul VK. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complicat. 2012;27(2):103–13.CrossRef Shivanna N, Naika M, Khanum F, Kaul VK. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complicat. 2012;27(2):103–13.CrossRef
12.
go back to reference Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signaling: (−)-Epicatechin as a paradigm. Mol Asp Med. 2018;61:31e40. Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signaling: (−)-Epicatechin as a paradigm. Mol Asp Med. 2018;61:31e40.
13.
go back to reference Yang C, Yu L, et al. Disruption of cholesterol homeostasis by plant sterols. J Clin Invest. 2004;114(6):813–22.CrossRef Yang C, Yu L, et al. Disruption of cholesterol homeostasis by plant sterols. J Clin Invest. 2004;114(6):813–22.CrossRef
14.
go back to reference D'Agostino M, De Simone F, Pizza C, Aquino R. Sterols in Stevia rebaudiana Bertoni. Boll Soc Ital Biol Sper. 1984;60(12):2237–40.PubMed D'Agostino M, De Simone F, Pizza C, Aquino R. Sterols in Stevia rebaudiana Bertoni. Boll Soc Ital Biol Sper. 1984;60(12):2237–40.PubMed
15.
go back to reference Chavushyan VA, Simonyan KV, Simonyan RM, Isoyan AS, Simonyan GM, Babakhanyan MA, Hovhannisyian LE, Nahapetyan KH, Avetisyan LG, Simonyan MA. Effects of stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose. BMC Complement Altern Med. 2017;17:540–53.CrossRef Chavushyan VA, Simonyan KV, Simonyan RM, Isoyan AS, Simonyan GM, Babakhanyan MA, Hovhannisyian LE, Nahapetyan KH, Avetisyan LG, Simonyan MA. Effects of stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose. BMC Complement Altern Med. 2017;17:540–53.CrossRef
16.
go back to reference Nishikimi M, Roa NA, Yogi K. The occurrence of Supeoxide anion in the reaction of reduced PhenazineMethosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46:849–54.CrossRef Nishikimi M, Roa NA, Yogi K. The occurrence of Supeoxide anion in the reaction of reduced PhenazineMethosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46:849–54.CrossRef
17.
go back to reference Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5.PubMed Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5.PubMed
18.
go back to reference Simonyan R.M., Simonyan G.M., Simonyan M.A. Method of determination of superoxide dismutase activity of bioactive compounds. Licence of invention N2929. Intelectual ownership of the agency of RA, Yerevan, 2015. Simonyan R.M., Simonyan G.M., Simonyan M.A. Method of determination of superoxide dismutase activity of bioactive compounds. Licence of invention N2929. Intelectual ownership of the agency of RA, Yerevan, 2015.
20.
go back to reference Vladimirov Yu.A., Archacov A.I. Lipid peroxidation in biomembranes. Nauka, 1972, Moscow. Vladimirov Yu.A., Archacov A.I. Lipid peroxidation in biomembranes. Nauka, 1972, Moscow.
21.
go back to reference Simonyan GM. The denaturating effect of ultrasound on the erythrocyte membranes cytochrome b558 ex vivo and in vitro. Electron J Nat Sci NAS RA. 2008;1(10):10–2. Simonyan GM. The denaturating effect of ultrasound on the erythrocyte membranes cytochrome b558 ex vivo and in vitro. Electron J Nat Sci NAS RA. 2008;1(10):10–2.
22.
go back to reference Melkonyan LG, Simonyan RM, Sekoyan ES, Simonyan MA. Change of the NADPH depending superoxide producing and ferrihemoglobin reducing activities of cytochrome b558 from spleen cells and erythrocytes membranes induced by the radiation of different character. Rep NAS RA. 2009;109(3):225–35. Melkonyan LG, Simonyan RM, Sekoyan ES, Simonyan MA. Change of the NADPH depending superoxide producing and ferrihemoglobin reducing activities of cytochrome b558 from spleen cells and erythrocytes membranes induced by the radiation of different character. Rep NAS RA. 2009;109(3):225–35.
23.
go back to reference Knight JA. Review: free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30(2):145–58.PubMed Knight JA. Review: free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30(2):145–58.PubMed
24.
go back to reference Simmonds HA, Goday A, Morris GS. Superoxide radicals, immunodeficiency and xanthine oxidase activity: man is not a mouse. Clin Sci (Lond). 1985;68(5):561–5.CrossRef Simmonds HA, Goday A, Morris GS. Superoxide radicals, immunodeficiency and xanthine oxidase activity: man is not a mouse. Clin Sci (Lond). 1985;68(5):561–5.CrossRef
25.
go back to reference Keyer K, Gort AS, Imlay JA. Superoxide and the production of oxidative DNA damage. Bacteriol. 1995;177(23):6782–90.CrossRef Keyer K, Gort AS, Imlay JA. Superoxide and the production of oxidative DNA damage. Bacteriol. 1995;177(23):6782–90.CrossRef
26.
go back to reference Regina M, Suzuki J. Cell proliferation, reactive oxygen and cellular glutathione. Dose Response. 2005;3(3):425–42. Regina M, Suzuki J. Cell proliferation, reactive oxygen and cellular glutathione. Dose Response. 2005;3(3):425–42.
27.
go back to reference Panday A, Sahoo M, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12:5–23.CrossRef Panday A, Sahoo M, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12:5–23.CrossRef
28.
go back to reference Verberne AJM, Korim WS, Sabetghadam A, Llewellyn-Smith IJ. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes. Br J Pharmacol. 2016;173(9):1425–37.CrossRef Verberne AJM, Korim WS, Sabetghadam A, Llewellyn-Smith IJ. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes. Br J Pharmacol. 2016;173(9):1425–37.CrossRef
29.
go back to reference Manea A, Tanase LI, Raicu M, Simionescu M. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochem Biophys Res Commun. 2010;396:901e907.CrossRef Manea A, Tanase LI, Raicu M, Simionescu M. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochem Biophys Res Commun. 2010;396:901e907.CrossRef
30.
go back to reference Wang Z, Xue L, Guo C, et al. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-B pathway. Biochem Biophys Res Commun. 2012;417(4):1280–5.CrossRef Wang Z, Xue L, Guo C, et al. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-B pathway. Biochem Biophys Res Commun. 2012;417(4):1280–5.CrossRef
Metadata
Title
Superoxide-producing lipoprotein fraction from Stevia leaves: definition of specific activity
Authors
A. S. Isoyan
K. V. Simonyan
R. M. Simonyan
M. A. Babayan
G. M. Simonyan
V. A. Chavushyan
M. A. Simonyan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2500-1

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue