Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Effects of stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose

Authors: V. A. Chavushyan, K. V. Simonyan, R. M. Simonyan, A. S. Isoyan, G. M. Simonyan, M. A. Babakhanyan, L. E. Hovhannisyian, Kh. H. Nahapetyan, L. G. Avetisyan, M. A. Simonyan

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Excess dietary fructose intake associated with metabolic syndrome and insulin resistance and increased risk of developing type 2 diabetes. Previous animal studies have reported that diabetic animals have significantly impaired behavioural and cognitive functions, pathological synaptic function and impaired expression of glutamate receptors. Correction of the antioxidant status of laboratory rodents largely prevents the development of fructose-induced plurimetabolic changes in the nervous system. We suggest a novel concept of efficiency of Stevia leaves for treatment of central diabetic neuropathy.

Methods

By in vivo extracellular studies induced spike activity of hippocampal neurons during high frequency stimulation of entorhinal cortex, as well as neurons of basolateral amygdala to high-frequency stimulation of the hippocampus effects of Stevia rebaudiana Bertoni plant evaluated in synaptic activity in the brain of fructose-enriched diet rats. In the conditions of metabolic disorders caused by fructose, antioxidant activity of Stevia rebaudiana was assessed by measuring the NOX activity of the hippocampus, amygdala and spinal cord.

Results

In this study, the characteristic features of the metabolic effects of dietary fructose on synaptic plasticity in hippocampal neurons and basolateral amygdala and the state of the NADPH oxidase (NOX) oxidative system of these brain formations are revealed, as well as the prospects for development of multitarget and polyfunctional phytopreparations (with adaptogenic, antioxidant, antidiabetic, nootropic activity) from native raw material of Stevia rebaudiana.
Stevia modulates degree of expressiveness of potentiation/depression (approaches but fails to achieve the norm) by shifting the percentage balance in favor of depressor type of responses during high-frequency stimulation, indicating its adaptogenic role in plasticity of neural networks. Under the action of fructose an increase (3–5 times) in specific quantity of total fraction of NOX isoforms isolated from the central nervous system tissue (amygdala, hippocampus, spinal cord) was revealed. Stevia exhibits an antistress, membrane-stabilizing role reducing the level of total fractions of NOX isoforms from central nervous system tissues and regulates NADPH-dependent O2 −producing activity.

Conclusion

Generally, in condition of metabolic disorders caused by intensive consumption of dietary fructose Stevia leaves contributes to the control of neuronal synaptic plasticity possibly influencing the conjugated NOX-specific targets.
Literature
1.
go back to reference Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology. 1999;53:1937–42.CrossRefPubMed Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology. 1999;53:1937–42.CrossRefPubMed
2.
go back to reference Strachan MW, Deary IJ, Ewing FM, Frier BM. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care. 1997;20:438–45.CrossRefPubMed Strachan MW, Deary IJ, Ewing FM, Frier BM. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care. 1997;20:438–45.CrossRefPubMed
3.
go back to reference Akomolafe A, Beiser A, Meigs JB, Au R, et al. Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham study. Arch Neurol. 2006;63(11):1551–5.CrossRefPubMed Akomolafe A, Beiser A, Meigs JB, Au R, et al. Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham study. Arch Neurol. 2006;63(11):1551–5.CrossRefPubMed
4.
go back to reference Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-upstudy. Neurology. 2004;63(7):1181–6.CrossRefPubMed Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-upstudy. Neurology. 2004;63(7):1181–6.CrossRefPubMed
5.
go back to reference El Khoury NB, Gratuze M, Papon MA, Bretteville A, Planel E. Insulin dysfunction and Tau pathology. Front Cell Neurosci. 2014;11(8):22. El Khoury NB, Gratuze M, Papon MA, Bretteville A, Planel E. Insulin dysfunction and Tau pathology. Front Cell Neurosci. 2014;11(8):22.
6.
go back to reference Kim B, Backus C, Oh S, Hayes JM, Feldman EL. Increased tau phosphorylation and cleavage in mouse models of type1 and type 2 diabetes. Endocrinology. 2009;150(12):5294–301.CrossRefPubMedPubMedCentral Kim B, Backus C, Oh S, Hayes JM, Feldman EL. Increased tau phosphorylation and cleavage in mouse models of type1 and type 2 diabetes. Endocrinology. 2009;150(12):5294–301.CrossRefPubMedPubMedCentral
7.
go back to reference Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS, Oliveira CR, Moreira PI. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta. 2013 Apr;1832(4):527–41.CrossRefPubMed Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS, Oliveira CR, Moreira PI. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta. 2013 Apr;1832(4):527–41.CrossRefPubMed
8.
go back to reference Stanhope KL, Havel PJ. Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 2008;19:16–24.CrossRefPubMedPubMedCentral Stanhope KL, Havel PJ. Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 2008;19:16–24.CrossRefPubMedPubMedCentral
9.
go back to reference Ter Horst KW, Schene MR, Holman R, Romijn JA, Serlie MJ. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: a systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr. 2016;104(6):1562–76.CrossRefPubMed Ter Horst KW, Schene MR, Holman R, Romijn JA, Serlie MJ. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: a systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr. 2016;104(6):1562–76.CrossRefPubMed
10.
go back to reference Islam MS, Wilson RD. Experimentally induced rodent models of type 2 diabetes. Methods Mol Biol. 2012;933:161–74.PubMed Islam MS, Wilson RD. Experimentally induced rodent models of type 2 diabetes. Methods Mol Biol. 2012;933:161–74.PubMed
11.
go back to reference Toop CR, Gentili S. Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients. 2016;8(9):pii: E577.CrossRef Toop CR, Gentili S. Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients. 2016;8(9):pii: E577.CrossRef
12.
go back to reference Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutrition & Metabolism. 2016;13(15):1–13. Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutrition & Metabolism. 2016;13(15):1–13.
13.
go back to reference Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and Cognitiion in middle-aged rats. Hippocampus. 2008;18:1085–8.CrossRefPubMedPubMedCentral Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and Cognitiion in middle-aged rats. Hippocampus. 2008;18:1085–8.CrossRefPubMedPubMedCentral
14.
go back to reference Dwyer D. Glucose metabolism in the brain. San Deigo: Academic Press; 2002. Dwyer D. Glucose metabolism in the brain. San Deigo: Academic Press; 2002.
15.
go back to reference Gold SM, Dziobek I, et al. Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia. 2007;50(4):711–9.CrossRefPubMed Gold SM, Dziobek I, et al. Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia. 2007;50(4):711–9.CrossRefPubMed
16.
go back to reference Brueh H., Sweat V., Hassenstab J., Polyakov V., Convit A. Cognitive Impairment in Non-Diabetic Middle-Aged and Older Adults is Associated with Insulin Resistance J Clin Exp Neuropsychol 2010; 32(5):487–493. Brueh H., Sweat V., Hassenstab J., Polyakov V., Convit A. Cognitive Impairment in Non-Diabetic Middle-Aged and Older Adults is Associated with Insulin Resistance J Clin Exp Neuropsychol 2010; 32(5):487–493.
17.
go back to reference Bruehl H, Wolf OT, Convit A. A blunted cortisol awakening response and hippocampal atrophy in type 2 diabetes mellitus. Psychoneuroendocrinology. 2009; Bruehl H, Wolf OT, Convit A. A blunted cortisol awakening response and hippocampal atrophy in type 2 diabetes mellitus. Psychoneuroendocrinology. 2009;
20.
go back to reference Richter-Levin G, Akirav I. Amygdala-hippocampus dynamic interaction in relation to memory. Mol Neurobiol. 2000;22(1–3):11–20.CrossRefPubMed Richter-Levin G, Akirav I. Amygdala-hippocampus dynamic interaction in relation to memory. Mol Neurobiol. 2000;22(1–3):11–20.CrossRefPubMed
21.
go back to reference Ottersen OP. Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol. 1982;10:30–48.CrossRef Ottersen OP. Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol. 1982;10:30–48.CrossRef
22.
go back to reference Rutlegde AC, Adeli K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev. 2007;65:S13–23.CrossRef Rutlegde AC, Adeli K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev. 2007;65:S13–23.CrossRef
23.
go back to reference Serrano F, Klann E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev. 2004;3(4):431–43.CrossRefPubMed Serrano F, Klann E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev. 2004;3(4):431–43.CrossRefPubMed
24.
go back to reference Peers C, Boyle JP. Oxidative modulation of K+ channels in the central nervous system in neurodegenerative diseases and aging. Antioxid Redox Signal. 2014;22:505–21.CrossRefPubMed Peers C, Boyle JP. Oxidative modulation of K+ channels in the central nervous system in neurodegenerative diseases and aging. Antioxid Redox Signal. 2014;22:505–21.CrossRefPubMed
25.
go back to reference Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63(1):218–42.CrossRefPubMed Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63(1):218–42.CrossRefPubMed
26.
go back to reference Natural MT. Compounds as Modulators of NADPH Oxidases. Oxidative Medicine and Cellular Longevity. 2013;271602:10 pages. Natural MT. Compounds as Modulators of NADPH Oxidases. Oxidative Medicine and Cellular Longevity. 2013;271602:10 pages.
27.
go back to reference Rasineni K, Desireddy S. Preventive effect of Catharanthus roseus (Linn.) against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Journal of Diabetes Mellitus. 2011;1:63–70.CrossRef Rasineni K, Desireddy S. Preventive effect of Catharanthus roseus (Linn.) against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Journal of Diabetes Mellitus. 2011;1:63–70.CrossRef
28.
go back to reference Mohd-Radzman NH, Ismail WI, Adam Z, Jaapar SS, Adam A. Potential Roles of Stevia rebaudiana Bertoni in Abrogating Insulin Resistance and Diabetes. A Review. Evid Based Complement Alternat Med, Article ID. 2013:718049, 10 pages. Mohd-Radzman NH, Ismail WI, Adam Z, Jaapar SS, Adam A. Potential Roles of Stevia rebaudiana Bertoni in Abrogating Insulin Resistance and Diabetes. A Review. Evid Based Complement Alternat Med, Article ID. 2013:718049, 10 pages.
30.
go back to reference Jeppesen PB, Gregersen S, Rolfsen SED, et al. Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism. 2003;52(3):372–8.CrossRefPubMed Jeppesen PB, Gregersen S, Rolfsen SED, et al. Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism. 2003;52(3):372–8.CrossRefPubMed
31.
go back to reference Shivanna N, Naika M, Khanum F, Kaul VK. Antioxidant, anti-diabetic and renal protective properties of Stevia Rebaudiana. J Diabetes Complicat. 2012;27(2):103–13.CrossRefPubMed Shivanna N, Naika M, Khanum F, Kaul VK. Antioxidant, anti-diabetic and renal protective properties of Stevia Rebaudiana. J Diabetes Complicat. 2012;27(2):103–13.CrossRefPubMed
32.
33.
go back to reference Sweatt J. Toward a molecular explanation for long-term potentiation. Learn Mem. 1999;6(5):399–416.CrossRefPubMed Sweatt J. Toward a molecular explanation for long-term potentiation. Learn Mem. 1999;6(5):399–416.CrossRefPubMed
34.
35.
go back to reference Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain J Neurol. 2006;129(Pt 7):1659–73.CrossRef Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain J Neurol. 2006;129(Pt 7):1659–73.CrossRef
36.
go back to reference Allen RJ, Leahy JS. Some effects of dietary dextrose, fructose, liquid glucose and sucrose in the adult male rat. Br J Nutr. 1966;20:339–47.CrossRefPubMed Allen RJ, Leahy JS. Some effects of dietary dextrose, fructose, liquid glucose and sucrose in the adult male rat. Br J Nutr. 1966;20:339–47.CrossRefPubMed
37.
go back to reference Babakhanyan M, Hovhannisian L, Gulyan A, Nahapetyan K, Karagamyan P, Beglaryan G. The introduction of a new technical culture of sweet-herb (Stevia Rebaudiana Bertoni) in RA and NKR: a promising and profitable offer for public and private investments. Journal Agroscience. 2012;5–6:296–302. Babakhanyan M, Hovhannisian L, Gulyan A, Nahapetyan K, Karagamyan P, Beglaryan G. The introduction of a new technical culture of sweet-herb (Stevia Rebaudiana Bertoni) in RA and NKR: a promising and profitable offer for public and private investments. Journal Agroscience. 2012;5–6:296–302.
38.
go back to reference Paxinos G, Watson Ch. The Rat Brain in Stereotaxic Coordinates.//5th Edition. New York: Academic Press. 2005; P.367. Paxinos G, Watson Ch. The Rat Brain in Stereotaxic Coordinates.//5th Edition. New York: Academic Press. 2005; P.367.
39.
go back to reference Simonyan MA, Babayan MA, Simonyan GM. Biochemistry. 1995;60(12):1977–87. Simonyan MA, Babayan MA, Simonyan GM. Biochemistry. 1995;60(12):1977–87.
40.
go back to reference Simonyan RA, Simonyan GM, Simonyan MA. A method for isolation of NADPH oxidase isoforms (Nox) from biosystems. An invention license of individual property agency. 2014; RA N2818 a, Yerevan. Simonyan RA, Simonyan GM, Simonyan MA. A method for isolation of NADPH oxidase isoforms (Nox) from biosystems. An invention license of individual property agency. 2014; RA N2818 a, Yerevan.
41.
go back to reference Simonyan RM, Chavushyan VA, Babayan MA, Simonyan GM, Chailyan SG, Simonyan MA. Differences in association with hemoglobin and activity of NADPH-oxidase isoforms from the cow brain. Neirokhimiya. 2017;34(2):129–36. Simonyan RM, Chavushyan VA, Babayan MA, Simonyan GM, Chailyan SG, Simonyan MA. Differences in association with hemoglobin and activity of NADPH-oxidase isoforms from the cow brain. Neirokhimiya. 2017;34(2):129–36.
43.
go back to reference Kremerskothen J, Wendholt D, Teber I, Barnekow A. Insulin-induced expression of the activity-regulated cytoskeleton-associated gene (ARC) in human neuroblastoma cells requires p21(ras), mitogen-activated protein kinase/extracellular regulated kinase and src tyrosine kinases but is protein kinase C-independent. Neurosci Lett. 2002;321(3):153–6.CrossRefPubMed Kremerskothen J, Wendholt D, Teber I, Barnekow A. Insulin-induced expression of the activity-regulated cytoskeleton-associated gene (ARC) in human neuroblastoma cells requires p21(ras), mitogen-activated protein kinase/extracellular regulated kinase and src tyrosine kinases but is protein kinase C-independent. Neurosci Lett. 2002;321(3):153–6.CrossRefPubMed
44.
go back to reference Puro DG, Agardh E. Insulin-mediated regulation of neuronal maturation. Science. 1984;225(4667):1170–2.CrossRefPubMed Puro DG, Agardh E. Insulin-mediated regulation of neuronal maturation. Science. 1984;225(4667):1170–2.CrossRefPubMed
45.
go back to reference Trudeau F, Gagnon S, Massicotte G. Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol. 2004;490:177–86.CrossRefPubMed Trudeau F, Gagnon S, Massicotte G. Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol. 2004;490:177–86.CrossRefPubMed
46.
go back to reference Suzuki C, Ozaki I, Tanosaki M, Suda T, Baba M, Matsunaga M. Peripheral and central conduction abnormalities in diabetes mellitus. Neurology. 2000;54:1932–7.CrossRefPubMed Suzuki C, Ozaki I, Tanosaki M, Suda T, Baba M, Matsunaga M. Peripheral and central conduction abnormalities in diabetes mellitus. Neurology. 2000;54:1932–7.CrossRefPubMed
47.
go back to reference Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol. 2002;441:1–14.CrossRefPubMed Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol. 2002;441:1–14.CrossRefPubMed
48.
go back to reference Isaac JTR, Nicoll RA, Malenka RC. Evidence for silent synapses: implications for the expression of LTP. Neuron. 1995;15:427–34.CrossRefPubMed Isaac JTR, Nicoll RA, Malenka RC. Evidence for silent synapses: implications for the expression of LTP. Neuron. 1995;15:427–34.CrossRefPubMed
49.
go back to reference Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 2002;25:578–88.CrossRefPubMed Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 2002;25:578–88.CrossRefPubMed
50.
go back to reference Colino A, Muñoz J, Vara H. Short term synaptic plasticity. Rev Neurol. 2002;34(6):593–539.PubMed Colino A, Muñoz J, Vara H. Short term synaptic plasticity. Rev Neurol. 2002;34(6):593–539.PubMed
51.
go back to reference Kamal A, Ramakers GMJ, Gispen WH, Biessels GJ. Hyperinsulinemia in rats causes impairment of spatial memory and learning with defects in hippocampal synaptic plasticity by involvement of postsynaptic mechanisms. Exp Brain Res. 2013;226(1):45–51.CrossRefPubMed Kamal A, Ramakers GMJ, Gispen WH, Biessels GJ. Hyperinsulinemia in rats causes impairment of spatial memory and learning with defects in hippocampal synaptic plasticity by involvement of postsynaptic mechanisms. Exp Brain Res. 2013;226(1):45–51.CrossRefPubMed
52.
go back to reference Baudry M, Lynch G. Remembrance of arguments past: how well is the glutamate receptor hypothesis of LTP holding up after 20 years? Neurobiol Learn Mem. 2001;76:284–97.CrossRefPubMed Baudry M, Lynch G. Remembrance of arguments past: how well is the glutamate receptor hypothesis of LTP holding up after 20 years? Neurobiol Learn Mem. 2001;76:284–97.CrossRefPubMed
53.
go back to reference Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002;25:103–26.CrossRefPubMed Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002;25:103–26.CrossRefPubMed
54.
go back to reference Liao D, Hessler NA. Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature. 1995;375:400–4.CrossRefPubMed Liao D, Hessler NA. Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature. 1995;375:400–4.CrossRefPubMed
55.
go back to reference Isoyan AS. Stevia Rebaudiana as a potential modulator of neuronal activity in insulin resistent model. Issues in theoretical and clinical medicine. 2016;6(110):35–9. Isoyan AS. Stevia Rebaudiana as a potential modulator of neuronal activity in insulin resistent model. Issues in theoretical and clinical medicine. 2016;6(110):35–9.
56.
go back to reference López-Corcuera B, Geerlings A. Aragón C Glycine neurotransmitter transporters: an update. MolMembrBiol. 2001;18(1):13–20. López-Corcuera B, Geerlings A. Aragón C Glycine neurotransmitter transporters: an update. MolMembrBiol. 2001;18(1):13–20.
57.
go back to reference Birke G, Draguhn A. No simple brake – the complex functions of inhibitory synapses. Pharmacopsychiatry. 2010;43(Suppl. 1):S21–31.CrossRefPubMed Birke G, Draguhn A. No simple brake – the complex functions of inhibitory synapses. Pharmacopsychiatry. 2010;43(Suppl. 1):S21–31.CrossRefPubMed
58.
go back to reference Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V, Simard JM. Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals. 2013;6(10):1287–303.CrossRefPubMedPubMedCentral Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V, Simard JM. Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals. 2013;6(10):1287–303.CrossRefPubMedPubMedCentral
59.
go back to reference Isoyan AS. Electrophysiological study of the effect of glibenclamide on neural activity of amygdale in the hippocampus in a rat model of type 2 diabetes. Medical Science of Armenia. 2016;1:66–73. Isoyan AS. Electrophysiological study of the effect of glibenclamide on neural activity of amygdale in the hippocampus in a rat model of type 2 diabetes. Medical Science of Armenia. 2016;1:66–73.
60.
go back to reference Babel H, Bischofs IB. Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs). BMC Syst Biol. 2016;10:35.CrossRefPubMedPubMedCentral Babel H, Bischofs IB. Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs). BMC Syst Biol. 2016;10:35.CrossRefPubMedPubMedCentral
61.
go back to reference Karapetyan AV, Simonyan GM, Anne-Frances Miller, Bert Lynn Jr, Babayan MA, Simonyan RM, Simonyan MA. Cytochromes b558IIII from erythrocyte membranes: some physico-chemical properties. 227th ACS National Meeting, Anaheim, CA, 2004. Karapetyan AV, Simonyan GM, Anne-Frances Miller, Bert Lynn Jr, Babayan MA, Simonyan RM, Simonyan MA. Cytochromes b558IIII from erythrocyte membranes: some physico-chemical properties. 227th ACS National Meeting, Anaheim, CA, 2004.
62.
go back to reference Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA. Blood flow regulation by S-Nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276(5321):2034–7.CrossRefPubMed Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA. Blood flow regulation by S-Nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276(5321):2034–7.CrossRefPubMed
63.
go back to reference Simonyan RM, Simonyan GM, Simonyan MA. The inhibition by cytochrome b558 of the superoxide –producing activity of suprol and its stimulation by carbone tetrachloride in vitro. Reports of National Academy of sciences of Armenia. 2005;105(4):384–9. Simonyan RM, Simonyan GM, Simonyan MA. The inhibition by cytochrome b558 of the superoxide –producing activity of suprol and its stimulation by carbone tetrachloride in vitro. Reports of National Academy of sciences of Armenia. 2005;105(4):384–9.
64.
go back to reference Simonyan GM. The denaturating effect of ultrasound on the erythrocyte membranes cytochrome b558 ex vivo and in vitro. Electronic J of Natural Sciences of NAS RA. 2008;1(10):10–2. Simonyan GM. The denaturating effect of ultrasound on the erythrocyte membranes cytochrome b558 ex vivo and in vitro. Electronic J of Natural Sciences of NAS RA. 2008;1(10):10–2.
65.
go back to reference Melkonyan LH, Simonyan RM, Sekoyan ES, Simonyan MA. Change of the NADPH depending superoxide producing and ferrihemoglobin reducing activities of cytochrome b558 from spleen cells and erythrocytes membranes induced by the radiation of different character. Reports of National Academy of sciences of Armenia. 2009;109(3):225–35. Melkonyan LH, Simonyan RM, Sekoyan ES, Simonyan MA. Change of the NADPH depending superoxide producing and ferrihemoglobin reducing activities of cytochrome b558 from spleen cells and erythrocytes membranes induced by the radiation of different character. Reports of National Academy of sciences of Armenia. 2009;109(3):225–35.
66.
go back to reference Feschyan SM, Simonyan RM, Sargsyan AC, Babayab MA, Simonyan GM, Engibaryan AA, Simonyan MA. The α- tocopherol decreases releasing of the isoforms of NADPH oxidase membranes of rat tissues cells components. Issues in Theoretical ans Clinical Medicine. 2013;16(1):36–9. Feschyan SM, Simonyan RM, Sargsyan AC, Babayab MA, Simonyan GM, Engibaryan AA, Simonyan MA. The α- tocopherol decreases releasing of the isoforms of NADPH oxidase membranes of rat tissues cells components. Issues in Theoretical ans Clinical Medicine. 2013;16(1):36–9.
67.
go back to reference Aghajanova YM. EATM decreases ex vivo releasing of NADPH-oxidases from erythrocyte membranes and blood serum of patients with diabetes types1 and 2. The New Armenian Medical Journal. 2013;7(3):23–31. Aghajanova YM. EATM decreases ex vivo releasing of NADPH-oxidases from erythrocyte membranes and blood serum of patients with diabetes types1 and 2. The New Armenian Medical Journal. 2013;7(3):23–31.
68.
go back to reference Simonyan RM, Feschyan SM, Karapetyan MA, Simonyan GM, Babayan MA, Engibaryan AA, Simonyan MA. The decrease by galarmine of the releasing of isoforms of NADPH oxidase from erythrocytes membranes and surfice cell membranes of lung sections at oxygen starviation of the rats. Issues in the theoretical and clinical Medicine. 2015;4(100):28–31. Simonyan RM, Feschyan SM, Karapetyan MA, Simonyan GM, Babayan MA, Engibaryan AA, Simonyan MA. The decrease by galarmine of the releasing of isoforms of NADPH oxidase from erythrocytes membranes and surfice cell membranes of lung sections at oxygen starviation of the rats. Issues in the theoretical and clinical Medicine. 2015;4(100):28–31.
69.
go back to reference Simonyan RM, Simonyan GM, Oxuzyan GR, Alexanyan SS, Simonyan MA. The hemoglobin induces releasing of the extracellular NADPH oxidase in mammalian blood serum and fluids of ascitic carcinomas in vitro and in vivo. Issues in theoretical and Clinical medicine. 2014;17(2):16–21. Simonyan RM, Simonyan GM, Oxuzyan GR, Alexanyan SS, Simonyan MA. The hemoglobin induces releasing of the extracellular NADPH oxidase in mammalian blood serum and fluids of ascitic carcinomas in vitro and in vivo. Issues in theoretical and Clinical medicine. 2014;17(2):16–21.
70.
go back to reference Hashida S, Yuzawa S, Suzuki NN, Fujioka Y, Takikawa T, Sumimoto H, Inagaki F, Fujii H. (2004) binding of FAD to cytochrome b 558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production. J Biol Chem. 2004;279:26378–86.CrossRefPubMed Hashida S, Yuzawa S, Suzuki NN, Fujioka Y, Takikawa T, Sumimoto H, Inagaki F, Fujii H. (2004) binding of FAD to cytochrome b 558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production. J Biol Chem. 2004;279:26378–86.CrossRefPubMed
71.
go back to reference Case CL, Rodriguez JR, Mukhopadhyay B. Characterization of an NADH oxidase of the flavindependent disulfide reductase family from Methanocaldococcus jannaschii. Microbiology. 2009;155:69–79.CrossRefPubMed Case CL, Rodriguez JR, Mukhopadhyay B. Characterization of an NADH oxidase of the flavindependent disulfide reductase family from Methanocaldococcus jannaschii. Microbiology. 2009;155:69–79.CrossRefPubMed
72.
go back to reference Simonyan RM, Chavushyan VA, Isoyan AS, Simonyan GM, Simonyan KV, Avetisyan LG, Nahapetyan KH, Babakhanyan MA, Simonyan MA. The membrane stabilizing effects of Stevia Rebaudiana Bertoni on a fructose-induced rat model of type 2 diabetes. Med Science of Armenia. 2015;3:51–60. Simonyan RM, Chavushyan VA, Isoyan AS, Simonyan GM, Simonyan KV, Avetisyan LG, Nahapetyan KH, Babakhanyan MA, Simonyan MA. The membrane stabilizing effects of Stevia Rebaudiana Bertoni on a fructose-induced rat model of type 2 diabetes. Med Science of Armenia. 2015;3:51–60.
73.
go back to reference Koulajian K, Desai T, Liu G/C, Ivovic A, Patterson JN, Tang C, El-Benna J, Joseph JW, Scholey JW, Giacca A. NADPH oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents. Diabetologia. 2013;56(5):1078–87.CrossRefPubMedPubMedCentral Koulajian K, Desai T, Liu G/C, Ivovic A, Patterson JN, Tang C, El-Benna J, Joseph JW, Scholey JW, Giacca A. NADPH oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents. Diabetologia. 2013;56(5):1078–87.CrossRefPubMedPubMedCentral
74.
go back to reference Rizzo B, Zambonin L, Angeloni C, Leoncini E, Dalla Sega FV, Prata C, Fiorentini D. Glycosides Modulate Glucose Transport in Different Cell Types. S HreliaSteviol, Oxidative Medicine and Cellular Longevity. 2013:11pages. Rizzo B, Zambonin L, Angeloni C, Leoncini E, Dalla Sega FV, Prata C, Fiorentini D. Glycosides Modulate Glucose Transport in Different Cell Types. S HreliaSteviol, Oxidative Medicine and Cellular Longevity. 2013:11pages.
75.
go back to reference Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev. 2005;63:133.CrossRefPubMed Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev. 2005;63:133.CrossRefPubMed
76.
go back to reference Rao SS, Attaluri A, Anderson L, Stumbo P. Ability of the normal human small intestine to absorb fructose: evaluation by breath testing. Clin Gastroenterol Hepatol. 2007;5:959–63.CrossRefPubMedPubMedCentral Rao SS, Attaluri A, Anderson L, Stumbo P. Ability of the normal human small intestine to absorb fructose: evaluation by breath testing. Clin Gastroenterol Hepatol. 2007;5:959–63.CrossRefPubMedPubMedCentral
77.
go back to reference Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34.CrossRefPubMedPubMedCentral Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34.CrossRefPubMedPubMedCentral
78.
go back to reference Castro MC, Massa ML, Schinella G, Gagliardino JJ, Francini F. Lipoic acid prevents liver metabolic changes induced by administration of a fructose-rich diet. Biochim Biophys Acta. 2013;1830(1):2226–32.CrossRefPubMed Castro MC, Massa ML, Schinella G, Gagliardino JJ, Francini F. Lipoic acid prevents liver metabolic changes induced by administration of a fructose-rich diet. Biochim Biophys Acta. 2013;1830(1):2226–32.CrossRefPubMed
79.
go back to reference Wilson C, González-Billault C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci. 2015;9:381.CrossRefPubMedPubMedCentral Wilson C, González-Billault C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci. 2015;9:381.CrossRefPubMedPubMedCentral
80.
go back to reference Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res. 2002;70:1–7.CrossRefPubMed Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res. 2002;70:1–7.CrossRefPubMed
81.
go back to reference Dickinson BC, Peltier J, Stone D, Schaffer DV, Chang CJ. Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol. 2011;7:106–12.CrossRefPubMed Dickinson BC, Peltier J, Stone D, Schaffer DV, Chang CJ. Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol. 2011;7:106–12.CrossRefPubMed
82.
go back to reference Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu GY, Quinn MT, Klann E. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci. 2005;29(1):97–106.CrossRefPubMedPubMedCentral Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu GY, Quinn MT, Klann E. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci. 2005;29(1):97–106.CrossRefPubMedPubMedCentral
83.
go back to reference Mielke J, Taghibiglou C, Liu L, Zhang Y, Jia Z, Adeli K, Wang YT. A biochemical and functional characterization of diet-induced brain insulin resistance. J Neurochem. 2005;93:1568–78.CrossRefPubMed Mielke J, Taghibiglou C, Liu L, Zhang Y, Jia Z, Adeli K, Wang YT. A biochemical and functional characterization of diet-induced brain insulin resistance. J Neurochem. 2005;93:1568–78.CrossRefPubMed
84.
go back to reference Shu HJ, Isenberg K, Cormier RJ, Benz A, Zorumski CF. Expression of fructose sensitive glucose transporter in the brains of fructose-fed rats. Neuroscience. 2006;140:889–95.CrossRefPubMed Shu HJ, Isenberg K, Cormier RJ, Benz A, Zorumski CF. Expression of fructose sensitive glucose transporter in the brains of fructose-fed rats. Neuroscience. 2006;140:889–95.CrossRefPubMed
85.
go back to reference Thomas JE, Glade MJ. Stevia: It’s not just about calories. The Open Obesity Journal. 2010;2:101–9.CrossRef Thomas JE, Glade MJ. Stevia: It’s not just about calories. The Open Obesity Journal. 2010;2:101–9.CrossRef
86.
go back to reference Guo H, Ling W, Wang Q, Liu C, Hu Y, Xia M. Cyanidin 3-glucoside protects 3T3-L1 adipocytes against H2O2- or TNF-훼-induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation. Biochem Pharmacol. 2008;75:1393–401.CrossRefPubMed Guo H, Ling W, Wang Q, Liu C, Hu Y, Xia M. Cyanidin 3-glucoside protects 3T3-L1 adipocytes against H2O2- or TNF-훼-induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation. Biochem Pharmacol. 2008;75:1393–401.CrossRefPubMed
87.
go back to reference Tavares L, Fortalezas S, Tyagi M, Barata D, et al. Bioactive compounds from endemic plants of Southwest Portugal: inhibition of acetylcholinesterase and radical scavenging activities. Pharm Biol. 2011:1–8. Tavares L, Fortalezas S, Tyagi M, Barata D, et al. Bioactive compounds from endemic plants of Southwest Portugal: inhibition of acetylcholinesterase and radical scavenging activities. Pharm Biol. 2011:1–8.
Metadata
Title
Effects of stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose
Authors
V. A. Chavushyan
K. V. Simonyan
R. M. Simonyan
A. S. Isoyan
G. M. Simonyan
M. A. Babakhanyan
L. E. Hovhannisyian
Kh. H. Nahapetyan
L. G. Avetisyan
M. A. Simonyan
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-2049-9

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue