Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Effects of Karela (Bitter Melon; Momordica charantia) on genes of lipids and carbohydrates metabolism in experimental hypercholesterolemia: biochemical, molecular and histopathological study

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Hypercholesterolemia is a serious diseases associated with type-2 diabetes, atherosclerosis, cardiovascular disorders and liver diseases. Humans seek for safe herbal medication such as karela (Momordica charantia/bitter melon) to treat such disorders to avoid side effect of pharmacotherapies widely used.

Methods

Forty male Wistar rats were divided into four equal groups; control group with free access to food and water, cholesterol administered group (40 mg/kg BW orally); karela administered group (5 g /kg BW orally) and mixture of cholesterol and karela. The treatments continued for 10 weeks. Karela was given for hypercholesterolemic rats after 6 weeks of cholesterol administration. Serum, liver and epididymal adipose tissues were taken for biochemical, histopathological and genetic assessments.

Results

Hypercholesterolemia induced a decrease in serum superoxide dismutase (SOD), catalase, reduced glutathione (GSH) and an increase in malondialdehyde (MDA) levels that were ameliorated by karela administration. Hypercholesterolemia up regulated antioxidants mRNA expression and altered the expression of carbohydrate metabolism genes. In parallel, hypercholesterolemic groups showed significant changes in the expression of PPAR-alpha and gamma, lipolysis, lipogenesis and cholesterol metabolism such as carnitine palmitoyltransferase-1 (CPT-1). Acyl CoA oxidase (ACO), fatty acids synthase (FAS), sterol responsible element binding protein-1c (SREBP1c), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR) and cholesterol 7α-hydroxylase (CYP7A1) at hepatic and adipose tissue levels. Interestingly, Karela ameliorated all altered genes confirming its hypocholesterolemic effect. Histopathological and immunohistochemical findings revealed that hypercholesterolemia induced hepatic tissue changes compared with control. These changes include cholesterol clefts, necrosis, karyolysis and sever congestion of portal blood vessel. Caspase-3 immunoreactivity showed positive expression in hepatic cells of hypercholesterolemic rats compared to control. All were counteracted and normalized after Karela administration to hypercholesterolemic group.

Conclusion

Current findings confirmed that karela is a potential supplement useful in treatment of hypercholesterolemia and its associated disorders and is good for human health.
Literature
1.
go back to reference Fan JG, Farrell GC. Epidemiology of non-alcoholic fatty liver disease in China. J Hepatol. 2009;50:204–10.CrossRefPubMed Fan JG, Farrell GC. Epidemiology of non-alcoholic fatty liver disease in China. J Hepatol. 2009;50:204–10.CrossRefPubMed
3.
go back to reference Pessayre D. Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2007;22(1):20–7.CrossRef Pessayre D. Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2007;22(1):20–7.CrossRef
4.
go back to reference Venturini D, Simao AN, Scripes NA, Bahls LD, Melo PA, Belinetti FM, et al. Evaluation of oxidative stress in overweight subjects with or without metabolic syndrome. Obesity (Silver Spring). 2012;20:2361–6.CrossRef Venturini D, Simao AN, Scripes NA, Bahls LD, Melo PA, Belinetti FM, et al. Evaluation of oxidative stress in overweight subjects with or without metabolic syndrome. Obesity (Silver Spring). 2012;20:2361–6.CrossRef
5.
go back to reference Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, et al. Miyamoto K (): increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008;57:1071–7. Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, et al. Miyamoto K (): increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008;57:1071–7.
6.
go back to reference Artham SM, Lavie CJ, Milani RV, Ventura HO. The obesity paradox: impact of obesity on the prevalence andprognosis of cardiovascular diseases,“Postgraduate Med 2008; 120 (2):34–41. Artham SM, Lavie CJ, Milani RV, Ventura HO. The obesity paradox: impact of obesity on the prevalence andprognosis of cardiovascular diseases,“Postgraduate Med 2008; 120 (2):34–41.
7.
go back to reference Bellentani SG, Saccoccio F. Masutti F, Crocè LS, Brandi G, Sasso F, Cristanini G, Tiribelli C. Prevalence of andrisk factors for hepatic steatosis in northern Italy. Ann Intern Med 2000; 132(2):112–117. Bellentani SG, Saccoccio F. Masutti F, Crocè LS, Brandi G, Sasso F, Cristanini G, Tiribelli C. Prevalence of andrisk factors for hepatic steatosis in northern Italy. Ann Intern Med 2000; 132(2):112–117.
8.
go back to reference Das SK, Balakrishnan V, Mukherjee S. Vasudevan. Evaluation of blood oxidative stress-related parameters inalcoholic liver disease and non-alcoholic fatty liver disease Scand J Clin Lab Invest. 2008;68(4):323–34. Das SK, Balakrishnan V, Mukherjee S. Vasudevan. Evaluation of blood oxidative stress-related parameters inalcoholic liver disease and non-alcoholic fatty liver disease Scand J Clin Lab Invest. 2008;68(4):323–34.
9.
go back to reference Lum H, Roebuck K.A. Oxidant stress andendothelial cell dysfunction. Am J Physiol Cell Physiol 2001; 280: 719–741. Lum H, Roebuck K.A. Oxidant stress andendothelial cell dysfunction. Am J Physiol Cell Physiol 2001; 280: 719–741.
10.
go back to reference Hirako S, Kim HJ, Shimizu S, Chiba H. Matsumoto A. Low dose fish oil consumption prevents hepatic lipid accumulation in high cholesterol diet fed mice. J Agric Food Chem 2011; 59: 13353–13359. Hirako S, Kim HJ, Shimizu S, Chiba H. Matsumoto A. Low dose fish oil consumption prevents hepatic lipid accumulation in high cholesterol diet fed mice. J Agric Food Chem 2011; 59: 13353–13359.
11.
go back to reference Wang X, Hasegawa J, Kitamura Y, Wang Z, Matsuda A, Shinoda W, et al. Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. J Pharmacol Sci. 2011;117:129–38. Wang X, Hasegawa J, Kitamura Y, Wang Z, Matsuda A, Shinoda W, et al. Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. J Pharmacol Sci. 2011;117:129–38.
13.
14.
go back to reference Betteridge J. Lipid disorders in diabetes mellitus, in: J.C. Pickup, G. Williams (Eds.), Text Book of Diabetes, second ed., Blackwell Science, London 1997; 55:1–31. Betteridge J. Lipid disorders in diabetes mellitus, in: J.C. Pickup, G. Williams (Eds.), Text Book of Diabetes, second ed., Blackwell Science, London 1997; 55:1–31.
15.
go back to reference Brown GB, Xue-Qiao Z, Sacco DE, Alberts JJ. Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation. 1993;87:1781–91.CrossRefPubMed Brown GB, Xue-Qiao Z, Sacco DE, Alberts JJ. Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation. 1993;87:1781–91.CrossRefPubMed
16.
go back to reference Yuwai KE, Sundar Rao K, Kaluwin C, Jones GP, Rivett DE. Chemical composition of Momordica charantia L. fruits. J Agric Food Chem. 1991;39:1762–3.CrossRef Yuwai KE, Sundar Rao K, Kaluwin C, Jones GP, Rivett DE. Chemical composition of Momordica charantia L. fruits. J Agric Food Chem. 1991;39:1762–3.CrossRef
18.
go back to reference Sharabi Y, Eldad A. Nonalcoholic fatty liver disease is associated with hyperlipidemia and obesity. Am J Med. 2000;109:171.CrossRefPubMed Sharabi Y, Eldad A. Nonalcoholic fatty liver disease is associated with hyperlipidemia and obesity. Am J Med. 2000;109:171.CrossRefPubMed
19.
go back to reference Xu J, Cao K, Li Y, Zou X, Chen C, Szeto I, et al. Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet. J Nutr. 2014;144(4):475–83. Xu J, Cao K, Li Y, Zou X, Chen C, Szeto I, et al. Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet. J Nutr. 2014;144(4):475–83.
20.
go back to reference Krawinkel MB. Keding GB bitter gourd (Momordica charantia): a dietary approach to hyperglycemia. Nutr Rev. 2006;64:331–7.CrossRefPubMed Krawinkel MB. Keding GB bitter gourd (Momordica charantia): a dietary approach to hyperglycemia. Nutr Rev. 2006;64:331–7.CrossRefPubMed
21.
go back to reference Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 2003;26:1277–94.CrossRefPubMed Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 2003;26:1277–94.CrossRefPubMed
22.
go back to reference Ahmed I, Adeghate E, Sharma AK, Pallot DJ. Singh J. Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat. Diabetes Res Clin Pract 1998; 40: 145–151. Ahmed I, Adeghate E, Sharma AK, Pallot DJ. Singh J. Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat. Diabetes Res Clin Pract 1998; 40: 145–151.
23.
go back to reference Miura T, Itoh C, Iwamoto N. Hypoglycemic activity of the fruit of the Momordica charantia in type 2 diabetic mice. J Nutr Sci Vitaminol. 2001;47:340–4.CrossRefPubMed Miura T, Itoh C, Iwamoto N. Hypoglycemic activity of the fruit of the Momordica charantia in type 2 diabetic mice. J Nutr Sci Vitaminol. 2001;47:340–4.CrossRefPubMed
24.
go back to reference Keller AC, Ma J, Kavalier A, He K, Brillantes AM, Kennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine. 2011;19:32–7.CrossRefPubMedPubMedCentral Keller AC, Ma J, Kavalier A, He K, Brillantes AM, Kennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine. 2011;19:32–7.CrossRefPubMedPubMedCentral
25.
go back to reference Annapoorani CA, Manimegalai K. Screening of medicinal plant Momordica charantia leaf for secondary metabolites. Int J Pharm Res Dev. 2013;5:1–6. Annapoorani CA, Manimegalai K. Screening of medicinal plant Momordica charantia leaf for secondary metabolites. Int J Pharm Res Dev. 2013;5:1–6.
26.
go back to reference Chao CY, Huang CJ. Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptorsand upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J Biomed Sci. 2003;10:782–91.PubMed Chao CY, Huang CJ. Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptorsand upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J Biomed Sci. 2003;10:782–91.PubMed
27.
go back to reference Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20:649–88.PubMed Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20:649–88.PubMed
28.
go back to reference Xu J, Cao K, Li Y, Zou X, Chen C, Szeto IM, et al. Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet. J Nutr. 2014;144(4):475–83. Xu J, Cao K, Li Y, Zou X, Chen C, Szeto IM, et al. Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet. J Nutr. 2014;144(4):475–83.
29.
go back to reference CO O, TO O. Antihypercholesterolemic activity of ethanolic extract of Buchholzia Coriacea in rats. Afr Health Sci. 2013;13(4):1084–90. CO O, TO O. Antihypercholesterolemic activity of ethanolic extract of Buchholzia Coriacea in rats. Afr Health Sci. 2013;13(4):1084–90.
30.
go back to reference Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 6th eds. Philadelphia: Churchill Livingstone/ Elsevier; 2008. p. 126–7. Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 6th eds. Philadelphia: Churchill Livingstone/ Elsevier; 2008. p. 126–7.
31.
go back to reference Zarnescu O, Brehar FM, Chivu M, Ciurea AV. Immunohistochemical localization of caspase-3, caspase-9 and Bax in U87 glioblastomaxenografts. J Mol Histol. 2008;39:561–9.CrossRefPubMed Zarnescu O, Brehar FM, Chivu M, Ciurea AV. Immunohistochemical localization of caspase-3, caspase-9 and Bax in U87 glioblastomaxenografts. J Mol Histol. 2008;39:561–9.CrossRefPubMed
32.
go back to reference Alkhedaide A, Soliman MM, Ibrahim ZS. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats. Biomed Rep. 2016;5(5):607–12.PubMedPubMedCentral Alkhedaide A, Soliman MM, Ibrahim ZS. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats. Biomed Rep. 2016;5(5):607–12.PubMedPubMedCentral
33.
go back to reference Feldstein AE, Gores GJ. Apoptosis in alcoholic and nonalcoholic steatohepatitis. Front Biosci. 2005;10(3):3093–9.CrossRefPubMed Feldstein AE, Gores GJ. Apoptosis in alcoholic and nonalcoholic steatohepatitis. Front Biosci. 2005;10(3):3093–9.CrossRefPubMed
34.
go back to reference Jiang Y, Zhao M, An W. Increased hepaticapoptosis in high-fat diet-induced NASH in rats may be associated with downregulation of hepaticstimulator substance. J Mol Med. 2011;89:1207–17.CrossRefPubMed Jiang Y, Zhao M, An W. Increased hepaticapoptosis in high-fat diet-induced NASH in rats may be associated with downregulation of hepaticstimulator substance. J Mol Med. 2011;89:1207–17.CrossRefPubMed
35.
go back to reference Chen Q, Chan LL, Li ET. Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr. 2003;133:1088–93.PubMed Chen Q, Chan LL, Li ET. Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr. 2003;133:1088–93.PubMed
36.
go back to reference Chen,Q, Li ET. Reduced adiposity in bitter melon (Momordica charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines. Br J Nutr 2005; 93: 747–754. Chen,Q, Li ET. Reduced adiposity in bitter melon (Momordica charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines. Br J Nutr 2005; 93: 747–754.
37.
go back to reference Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab. 2000;11:327–32.CrossRefPubMed Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab. 2000;11:327–32.CrossRefPubMed
38.
go back to reference Xu L, Xu Y, Wang S, Deng Q, Wu CQ, Chen XT, et al. Novel bitter melon extracts highly yielded from supercritical extraction reduce the adiposity through the enhanced lipid metabolism in mice fed a high fat diet. J Nut Intermed Metab. 2016;6(2016):26e32. Xu L, Xu Y, Wang S, Deng Q, Wu CQ, Chen XT, et al. Novel bitter melon extracts highly yielded from supercritical extraction reduce the adiposity through the enhanced lipid metabolism in mice fed a high fat diet. J Nut Intermed Metab. 2016;6(2016):26e32.
39.
go back to reference Wu SJ, Ng LT. Antioxidant and free radical scavenging activities of wild bitter gourd (Momordica charantia Linn. Var. Abbreviata Ser.) in Taiwan. LWT-Food Science and Technol. 2008;41:323–30.CrossRef Wu SJ, Ng LT. Antioxidant and free radical scavenging activities of wild bitter gourd (Momordica charantia Linn. Var. Abbreviata Ser.) in Taiwan. LWT-Food Science and Technol. 2008;41:323–30.CrossRef
40.
go back to reference Shih CC, Shlau MT, Lin CH, Wu JB. Momordica charantia Ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice. Phytother Res. 2014;28(3):363–71.CrossRefPubMed Shih CC, Shlau MT, Lin CH, Wu JB. Momordica charantia Ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice. Phytother Res. 2014;28(3):363–71.CrossRefPubMed
41.
go back to reference Shibib BA, Khan LA, Rahman R. Activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1, 6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem J. 1993;292:267–70.CrossRefPubMedPubMedCentral Shibib BA, Khan LA, Rahman R. Activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1, 6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem J. 1993;292:267–70.CrossRefPubMedPubMedCentral
42.
go back to reference Nerurkar PV, Lee YK, Nerurkar VR. Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes. BMC Complement Altern Med. 2010;10:34.CrossRefPubMedPubMedCentral Nerurkar PV, Lee YK, Nerurkar VR. Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes. BMC Complement Altern Med. 2010;10:34.CrossRefPubMedPubMedCentral
43.
go back to reference Wakabayashi K, Okamura M, Tsutsumi S, Nishikawa NS, Tanaka T, Sakakibara I, et al. The peroxisome proliferator-activated receptor gamma/retinoid X receptor alpha heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol Cell Biol. 2009;29:3544–55. Wakabayashi K, Okamura M, Tsutsumi S, Nishikawa NS, Tanaka T, Sakakibara I, et al. The peroxisome proliferator-activated receptor gamma/retinoid X receptor alpha heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol Cell Biol. 2009;29:3544–55.
44.
go back to reference Inoue J, Kumagai H, Terada T, Maeda M, Shimizu M, Sato R. Proteolytic activation of SREBPs during adipocyte differentiation. Biochem Biophys Res Commun. 2001;283:1157–61.CrossRefPubMed Inoue J, Kumagai H, Terada T, Maeda M, Shimizu M, Sato R. Proteolytic activation of SREBPs during adipocyte differentiation. Biochem Biophys Res Commun. 2001;283:1157–61.CrossRefPubMed
45.
go back to reference Huang HL, Hong YW, Wong YH, Chen YN, Chyuan JH, Huang CJ, et al. Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats. Br J Nutr. 2008;99(2):230–9. Huang HL, Hong YW, Wong YH, Chen YN, Chyuan JH, Huang CJ, et al. Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats. Br J Nutr. 2008;99(2):230–9.
46.
go back to reference Pandak WM, Schwarz C, Hylemon PB, Mallonee D, Valerie K, Heuman DM. Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis. Am J Physiol Gastrointest Liver Physiol. 2001;281:878–89. Pandak WM, Schwarz C, Hylemon PB, Mallonee D, Valerie K, Heuman DM. Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis. Am J Physiol Gastrointest Liver Physiol. 2001;281:878–89.
47.
go back to reference Sievanen E. Exploitation of bile acid transport systems in prodrug design. Molecules. 2007;12:1859–89.CrossRefPubMed Sievanen E. Exploitation of bile acid transport systems in prodrug design. Molecules. 2007;12:1859–89.CrossRefPubMed
48.
go back to reference Gupta S, Pandak WM, Hylemon PB. LXRα is the dominant regulator of CYP7A1 transcription. Biochem Biophys Res Commun. 2002;293:338–43.CrossRefPubMed Gupta S, Pandak WM, Hylemon PB. LXRα is the dominant regulator of CYP7A1 transcription. Biochem Biophys Res Commun. 2002;293:338–43.CrossRefPubMed
49.
go back to reference Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000;6:517–26.CrossRefPubMed Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000;6:517–26.CrossRefPubMed
Metadata
Title
Effects of Karela (Bitter Melon; Momordica charantia) on genes of lipids and carbohydrates metabolism in experimental hypercholesterolemia: biochemical, molecular and histopathological study
Publication date
01-12-2017
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1833-x

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue