Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Comparison between the effects of potassium phosphite and chitosan on changes in the concentration of Cucurbitacin E and on antibacterial property of Cucumis sativus

Authors: Moazzameh Ramezani, Fatemeh Rahmani, Ali Dehestani

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Cucurbitacins are mostly found in the members of the family Cucurbitaceae and are responsible for the bitter taste of cucumber. Pharmacological activities such as anti-bacterial and anti-tumor effects have been attributed to these structurally divers triterpens. The aim of this study was to investigate the effect of potassium phosphite (KPhi) and chitosan on Cucurbitacin E (CuE) concentration in different tissues of Cucumis sativus. The antibacterial effect of plant ethanolic extracts was also examined against E.coli PTCC 1399 and Pseudomonas aeruginosa PTCC 1430 bacterial strains.

Methods

After emergence of secondary leaves, cucumber plants were divided into 4 groups (each group consisted of 6 pots and each pot contained one plant) and different treatments performed as follows: group1. Leaves were sprayed with distilled water (Control), group 2. The leaves were solely treated with potassium phosphite (KPhi), group 3. Leaves were solely sprayed with chitosan (Chitosan), group 4. Leaves were treated with KPhi and chitosan (KPhi + chitosan). The KPhi (2 g L−1) and chitosan (0.2 g L−1) were applied twice every 12 h for one day. Fruits, roots and leaves were harvested 24 h later. The ethanolic extract of plant organs was used for determination of CuE concentration using HPLC approach. The antimicrobial activity was evaluated by the agar well diffusion method. The experiments were arranged in a completely randomized design (CRD) and performed in six biological replications for each treatment. Analysis of variance was performed by one-way ANOVA and Dunnette multiple comparison using SPSS.

Results

The highest level of CuE was recorded in fruit (2.2 g L−1) of plants under concomitant applications of KPhi and chitosan. Result of antibacterial activity evaluation showed that under concomitant treatments of KPhi and chitosan, fruit extract exhibited the highest potential for activity against E. coli PTCC 1399 (with mean zone of inhibition equal to 36 mm) and Pseudomonas aeruginosa PTCC 1430 (with mean zone of inhibition equal to 33 mm).

Conclusions

KPhi and chitosan can induce production of CuE compound and increase antibacterial potential of cucumber plant extract. The application of KPhi and chitosan may be considered as promising prospect in the biotechnological production of CuE.
Literature
1.
go back to reference Kupchan SM, Meshulam H, Sneden AT. New cucurbitacins from Phormium tenax and Marah oreganos. Phytochemistry. 1978;17:767–9.CrossRef Kupchan SM, Meshulam H, Sneden AT. New cucurbitacins from Phormium tenax and Marah oreganos. Phytochemistry. 1978;17:767–9.CrossRef
2.
go back to reference Kaushik U, Aeri V, Mir SR. Cucurbitacins – an insight into medicinal leads from nature. Pharmacogn Rev. 2015;9(17):12–8. Kaushik U, Aeri V, Mir SR. Cucurbitacins – an insight into medicinal leads from nature. Pharmacogn Rev. 2015;9(17):12–8.
4.
go back to reference Chen JC, Chiu MH, Nie R, Cordell GA, Qiu SX. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep. 2005;22:386–99. Chen JC, Chiu MH, Nie R, Cordell GA, Qiu SX. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep. 2005;22:386–99.
5.
go back to reference Dong Y, Lu B, Zhang X, Zhang J, Lai L, Li D, et al. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2–STAT3 signaling pathway. Carcinogenesis. 2010;31(12):2097–104.CrossRefPubMed Dong Y, Lu B, Zhang X, Zhang J, Lai L, Li D, et al. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2–STAT3 signaling pathway. Carcinogenesis. 2010;31(12):2097–104.CrossRefPubMed
6.
go back to reference Attard E, Brincat MP, Cuschieri A. Immuno modulatory activity of cucurbitacin E isolated from Ecballium elaterium. Fitoterapia. 2005;76:439–41.CrossRefPubMed Attard E, Brincat MP, Cuschieri A. Immuno modulatory activity of cucurbitacin E isolated from Ecballium elaterium. Fitoterapia. 2005;76:439–41.CrossRefPubMed
7.
go back to reference Bar-Nun N, Mayer AM. Cucurbitacins protect cucumber tissue against infection by Botrytis cinerea. Phytochemistry. 1990;29:787–91.CrossRef Bar-Nun N, Mayer AM. Cucurbitacins protect cucumber tissue against infection by Botrytis cinerea. Phytochemistry. 1990;29:787–91.CrossRef
8.
go back to reference Gry J, Søborg I, Andersson HC. Cucurbitacins in plant food. Tema Nord. 2006;556:1–68. Gry J, Søborg I, Andersson HC. Cucurbitacins in plant food. Tema Nord. 2006;556:1–68.
9.
go back to reference Bartalis J, Halaweish FT. Relationship between cucurbitacins reversed-phase high performance liquid chromatography hydrophobicity index and basal cytotoxicity on HepG2 cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;818:159–66.CrossRefPubMed Bartalis J, Halaweish FT. Relationship between cucurbitacins reversed-phase high performance liquid chromatography hydrophobicity index and basal cytotoxicity on HepG2 cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;818:159–66.CrossRefPubMed
10.
go back to reference Zhaoa J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 2005;23:283–333.CrossRef Zhaoa J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 2005;23:283–333.CrossRef
11.
12.
go back to reference Mofidnakhaei M, Abdossi V, Dehestani A, Pirdashti H, Babaeizad V. Potassium phosphite affects growth, antioxidant enzymes activity and alleviates disease damage in cucumber plants inoculated with Pythium ultimum. Arch Phytopathology Plant Protect. 2016;49:207–21.CrossRef Mofidnakhaei M, Abdossi V, Dehestani A, Pirdashti H, Babaeizad V. Potassium phosphite affects growth, antioxidant enzymes activity and alleviates disease damage in cucumber plants inoculated with Pythium ultimum. Arch Phytopathology Plant Protect. 2016;49:207–21.CrossRef
13.
go back to reference Hoagland DR, Arnon DI. The water culture method for growing plants without soil. In: Arnon DI, editor. : Berkeley, College of Agriculture, University of California; 1950. p. 1–32. Hoagland DR, Arnon DI. The water culture method for growing plants without soil. In: Arnon DI, editor. : Berkeley, College of Agriculture, University of California; 1950. p. 1–32.
15.
go back to reference Attard E. Rapid detection of Cucurbitacins in tissues and in vitro cultures of Ecballium elaterium (L.) A. Rich. Cucurbit Genetics Cooperative Report. 2002;25:71–5. Attard E. Rapid detection of Cucurbitacins in tissues and in vitro cultures of Ecballium elaterium (L.) A. Rich. Cucurbit Genetics Cooperative Report. 2002;25:71–5.
16.
go back to reference Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. Clinical and Laboratory Standards Institute. Wayne: CLSI publication; 2012. M7-A9. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. Clinical and Laboratory Standards Institute. Wayne: CLSI publication; 2012. M7-A9.
17.
go back to reference Baron EJ, Fingold SM. Bailey & Scott Diagnostic Microbiology. Philadelphia: Mosby; 2007. p. 236–40. Baron EJ, Fingold SM. Bailey & Scott Diagnostic Microbiology. Philadelphia: Mosby; 2007. p. 236–40.
18.
go back to reference Araujo L, Bispo WMS, Rios VS, Fernandes SA, Rodrigues FA. Induction of the phenylpropanoid pathway by acibenzolar-s-methyl and potassium phosphite increases mango resistance to Ceratocystis fimbriata infection. Plant Dis. 2015;99:447–59. Araujo L, Bispo WMS, Rios VS, Fernandes SA, Rodrigues FA. Induction of the phenylpropanoid pathway by acibenzolar-s-methyl and potassium phosphite increases mango resistance to Ceratocystis fimbriata infection. Plant Dis. 2015;99:447–59.
19.
go back to reference Babu RM, Sajeena A, Samundeeswari AV, Sreedhar A, Vidhyasekeran P, Reddy MS. Induction of bacterial blight (Xanthomonas oryzae pv. Oryzae) resistance in rice by treatment with acibenzolar-S-methyl. Ann Appl Biol. 2003;143:333–40.CrossRef Babu RM, Sajeena A, Samundeeswari AV, Sreedhar A, Vidhyasekeran P, Reddy MS. Induction of bacterial blight (Xanthomonas oryzae pv. Oryzae) resistance in rice by treatment with acibenzolar-S-methyl. Ann Appl Biol. 2003;143:333–40.CrossRef
20.
go back to reference Badmanaban R. Studies on anthelmintic and antimicrobial activity of the leaf extracts of Lagenaria siceraria. J Glob Pharma Technol. 2010;2:66–70. Badmanaban R. Studies on anthelmintic and antimicrobial activity of the leaf extracts of Lagenaria siceraria. J Glob Pharma Technol. 2010;2:66–70.
21.
go back to reference Putalun W, Luealon W, De-Eknamkul W, Tanaka H, Shoyama Y. Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnol Lett. 2007;29:1143–6.CrossRefPubMed Putalun W, Luealon W, De-Eknamkul W, Tanaka H, Shoyama Y. Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnol Lett. 2007;29:1143–6.CrossRefPubMed
22.
go back to reference Chang JH, Shin JH, Chung IS, Lee HJ. Improved menthol production from chitosan elicited suspension culture of Mentha piperita. Biotechnol Lett. 1998;20:1097–9.CrossRef Chang JH, Shin JH, Chung IS, Lee HJ. Improved menthol production from chitosan elicited suspension culture of Mentha piperita. Biotechnol Lett. 1998;20:1097–9.CrossRef
23.
go back to reference Baque MA, Shiragi MHK, Lee EJ, Paek KY. Elicitor effect of chitosan and pectin on the biosynthesis of anthraquinones, phenolics and flavonoids in adventitious root suspension cultures of Morinda citrifolia (L.). Aust J Crop Sci. 2012;6(9):1349–55. Baque MA, Shiragi MHK, Lee EJ, Paek KY. Elicitor effect of chitosan and pectin on the biosynthesis of anthraquinones, phenolics and flavonoids in adventitious root suspension cultures of Morinda citrifolia (L.). Aust J Crop Sci. 2012;6(9):1349–55.
24.
go back to reference Liang YC, Sun WC, Si J, Römheld V. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol. 2005;54:678–85.CrossRef Liang YC, Sun WC, Si J, Römheld V. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol. 2005;54:678–85.CrossRef
25.
go back to reference Orlita A, Sidwa-Gorycka M, Paszkiewicz M, Malinski E, Kumirska J, Siedlecka EM, et al. Application of chitin and chitosan as elicitors of coumarins and fluoroquinolone alkaloids in Ruta graveolens L. (common rue). Biotechnol Appl Biochem. 2008;51:91–6.CrossRefPubMed Orlita A, Sidwa-Gorycka M, Paszkiewicz M, Malinski E, Kumirska J, Siedlecka EM, et al. Application of chitin and chitosan as elicitors of coumarins and fluoroquinolone alkaloids in Ruta graveolens L. (common rue). Biotechnol Appl Biochem. 2008;51:91–6.CrossRefPubMed
26.
go back to reference Sotiroudis G, Melliou E, Sotiroudis TG, Chinou I. Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumbers (Cucumis sativus) cultivars. J Food Biochem. 2010;34:61–78.CrossRef Sotiroudis G, Melliou E, Sotiroudis TG, Chinou I. Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumbers (Cucumis sativus) cultivars. J Food Biochem. 2010;34:61–78.CrossRef
Metadata
Title
Comparison between the effects of potassium phosphite and chitosan on changes in the concentration of Cucurbitacin E and on antibacterial property of Cucumis sativus
Authors
Moazzameh Ramezani
Fatemeh Rahmani
Ali Dehestani
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1808-y

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue