Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

Geijigajakyak decoction inhibits the motility and tumorigenesis of colorectal cancer cells

Authors: Soong-in Lee, Jeong A Bae, Yoo-Seung Ko, Kyoung-in Lee, Hangun Kim, Kyung Keun Kim

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Recent studies report that inflammatory diseases of the large intestine are associated with colorectal cancer. Geijigajakyak Decoction (GJD) has antispasmodic and anti-inflammatory effects on the gastrointestinal tract. Thus, in light of the connection between chronic bowel inflammation and colorectal cancer (CRC), we asked whether GJD inhibits colorectal tumorigenesis.

Methods

The effects of GJD on the viability and proliferation of CRC cells were evaluated using MTT and BrdU assays, respectively. The motility of CRC cells was examined by a Transwell migration/invasion assay and immunoblot analysis was used to examine the signaling pathways associated with migration. A syngeneic Balb/c mice allograft model, in which CT26 cells were injected into the dorsum, was used to evaluate the anti-tumor effects of GJD in vivo.

Results

GJD had no cytotoxic effects against HCT116 CRC cells, although it did inhibit their proliferation. GJD inhibited the migration of HCT116 cells, and suppressed the invasion of HCT116, Caco2, and CSC221 CRC cells. In addition, GJD downregulated the expression of p-JNK and p-p38 MAPK, which are downstream signaling molecules associated with invasiveness. Furthermore, oral administration of GJD (333 mg/kg, twice a day) inhibited tumor growth in a mouse xenograft model.

Conclusions

GJD inhibited the motility of human CRC cells and suppressed tumorigenesis in a mouse model. These results suggest that GJD warrants further study as a potential adjuvant anti-cancer therapy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74:2157–84.CrossRefPubMed Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74:2157–84.CrossRefPubMed
3.
go back to reference Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I. Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol. 2007;3:360–6.CrossRefPubMed Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I. Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol. 2007;3:360–6.CrossRefPubMed
4.
go back to reference Lee SI. A philological research on the Way of medical study of ShangHanLun. Herbal Formula Sci. 2014;22:1–13.CrossRef Lee SI. A philological research on the Way of medical study of ShangHanLun. Herbal Formula Sci. 2014;22:1–13.CrossRef
6.
go back to reference Lee JY, Kang HS, Park BE, Moon HJ, Sim SS, Kim CJ. Inhibitory effects of Geijigajakyak-Tang on trinitrobenzene sulfonic acid-induced colitis. J Ethnopharmacol. 2009;126:244–51.CrossRefPubMed Lee JY, Kang HS, Park BE, Moon HJ, Sim SS, Kim CJ. Inhibitory effects of Geijigajakyak-Tang on trinitrobenzene sulfonic acid-induced colitis. J Ethnopharmacol. 2009;126:244–51.CrossRefPubMed
7.
go back to reference Oka T, Okumi H, Nishida S, Ito T, Morikiyo S, Kimura Y, Murakami M. Effects of kampo on functional gastrointestinal disorders. Biopsychosoc Med. 2014;8:5.CrossRefPubMedPubMedCentral Oka T, Okumi H, Nishida S, Ito T, Morikiyo S, Kimura Y, Murakami M. Effects of kampo on functional gastrointestinal disorders. Biopsychosoc Med. 2014;8:5.CrossRefPubMedPubMedCentral
8.
go back to reference Saitoh K, Kase Y, Ishige A, Komatsu Y, Sasaki H, Shibahara N. Effects of Keishi-ka-shakuyaku-to (Gui-Zhi-Jia-Shao-Yao-Tang) on diarrhea and small intestinal movement. Biol Pharm Bull. 1999;22:87–9.CrossRefPubMed Saitoh K, Kase Y, Ishige A, Komatsu Y, Sasaki H, Shibahara N. Effects of Keishi-ka-shakuyaku-to (Gui-Zhi-Jia-Shao-Yao-Tang) on diarrhea and small intestinal movement. Biol Pharm Bull. 1999;22:87–9.CrossRefPubMed
9.
go back to reference Nobe K, Momose K, Sakai Y. Effects of kampo medicine, keishi-ka shakuyaku-to (TJ-60) on alteration of diacylglycerol metabolism in gastrointestinal smooth muscle of diabetic rats. Acta Pharmacol Sin. 2002;23:1173–80.PubMed Nobe K, Momose K, Sakai Y. Effects of kampo medicine, keishi-ka shakuyaku-to (TJ-60) on alteration of diacylglycerol metabolism in gastrointestinal smooth muscle of diabetic rats. Acta Pharmacol Sin. 2002;23:1173–80.PubMed
10.
go back to reference Kito Y, Teramoto N. Effects of Hange-shashin-to (TJ-14) and Keishi-ka-shakuyaku-to (TJ-60) on contractile activity of circular smooth muscle of the rat distal colon. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1059–1066.CrossRefPubMed Kito Y, Teramoto N. Effects of Hange-shashin-to (TJ-14) and Keishi-ka-shakuyaku-to (TJ-60) on contractile activity of circular smooth muscle of the rat distal colon. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1059–1066.CrossRefPubMed
11.
go back to reference Arnold D, Seufferlein T. Targeted treatments in colorectal cancer: state of the art and future perspectives. Gut. 2010;59:838–58.CrossRefPubMed Arnold D, Seufferlein T. Targeted treatments in colorectal cancer: state of the art and future perspectives. Gut. 2010;59:838–58.CrossRefPubMed
13.
go back to reference Lee JH, Park SR, Chay KO, Seo YW, Kook H, Ahn KY, et al. KAI1 COOH-terminal interacting tetraspanin (KITENIN), a member of the tetraspanin family, interacts with KAI1, a tumor metastasis suppressor, and enhances metastasis of cancer. Cancer Res. 2004;64:4235–43.CrossRefPubMed Lee JH, Park SR, Chay KO, Seo YW, Kook H, Ahn KY, et al. KAI1 COOH-terminal interacting tetraspanin (KITENIN), a member of the tetraspanin family, interacts with KAI1, a tumor metastasis suppressor, and enhances metastasis of cancer. Cancer Res. 2004;64:4235–43.CrossRefPubMed
14.
go back to reference Lee JH, Cho ES, Kim MY, Seo YW, Kho DH, Chung IJ, et al. Suppression of progression and metastasis of established colon tumors in mice by intravenous delivery of short interfering RNA targeting KITENIN, a metastasis-enhancing protein. Cancer Res. 2005;65:8993–9003.CrossRefPubMed Lee JH, Cho ES, Kim MY, Seo YW, Kho DH, Chung IJ, et al. Suppression of progression and metastasis of established colon tumors in mice by intravenous delivery of short interfering RNA targeting KITENIN, a metastasis-enhancing protein. Cancer Res. 2005;65:8993–9003.CrossRefPubMed
15.
go back to reference Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14. e2105.CrossRefPubMed Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14. e2105.CrossRefPubMed
16.
go back to reference Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med. 1990;323:1228–33.CrossRefPubMed Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med. 1990;323:1228–33.CrossRefPubMed
18.
go back to reference Farrell MP, Kummar S. Phase I/IIA randomized study of PHY906, a novel herbal agent, as a modulator of chemotherapy in patients with advanced colorectal cancer. Clin Colorectal Cancer. 2003;2:253–6.CrossRefPubMed Farrell MP, Kummar S. Phase I/IIA randomized study of PHY906, a novel herbal agent, as a modulator of chemotherapy in patients with advanced colorectal cancer. Clin Colorectal Cancer. 2003;2:253–6.CrossRefPubMed
19.
go back to reference Liu SH, Cheng YC. Old formula, new Rx: the journey of PHY906 as cancer adjuvant therapy. J Ethnopharmacol. 2012;140:614–23.CrossRefPubMed Liu SH, Cheng YC. Old formula, new Rx: the journey of PHY906 as cancer adjuvant therapy. J Ethnopharmacol. 2012;140:614–23.CrossRefPubMed
20.
go back to reference Kummar S, Copur MS, Rose M, Wadler S, Stephenson J, O’Rourke M, Brenckman W, Tilton R, Liu SH, Jiang Z, et al. A phase I study of the chinese herbal medicine PHY906 as a modulator of irinotecan-based chemotherapy in patients with advanced colorectal cancer. Clin Colorectal Cancer. 2011;10:85–96.CrossRefPubMed Kummar S, Copur MS, Rose M, Wadler S, Stephenson J, O’Rourke M, Brenckman W, Tilton R, Liu SH, Jiang Z, et al. A phase I study of the chinese herbal medicine PHY906 as a modulator of irinotecan-based chemotherapy in patients with advanced colorectal cancer. Clin Colorectal Cancer. 2011;10:85–96.CrossRefPubMed
21.
go back to reference Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, Liu SH, Cheng YC. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med. 2010;2:45ra59.CrossRefPubMed Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, Liu SH, Cheng YC. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med. 2010;2:45ra59.CrossRefPubMed
22.
go back to reference Lin X, Yi Z, Diao J, Shao M, Zhao L, Cai H, Fan Q, Yao X, Sun X. ShaoYao decoction ameliorates colitis-associated colorectal cancer by downregulating proinflammatory cytokines and promoting epithelial-mesenchymal transition. J Transl Med. 2014;12:105.CrossRefPubMedPubMedCentral Lin X, Yi Z, Diao J, Shao M, Zhao L, Cai H, Fan Q, Yao X, Sun X. ShaoYao decoction ameliorates colitis-associated colorectal cancer by downregulating proinflammatory cytokines and promoting epithelial-mesenchymal transition. J Transl Med. 2014;12:105.CrossRefPubMedPubMedCentral
23.
go back to reference Stapleton CM, Joo JH, Kim YS, Liao G, Panettieri Jr RA, Jetten AM. Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways. Exp Cell Res. 2010;316:507–16.CrossRefPubMed Stapleton CM, Joo JH, Kim YS, Liao G, Panettieri Jr RA, Jetten AM. Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways. Exp Cell Res. 2010;316:507–16.CrossRefPubMed
24.
go back to reference Jin X, Wang J, Xia ZM, Shang CH, Chao QL, Liu YR, Fan HY, Chen DQ, Qiu F, Zhao F. Anti-inflammatory and Anti-oxidative Activities of Paeonol and Its Metabolites Through Blocking MAPK/ERK/p38 Signaling Pathway. Inflammation. 2016;39:434–46.CrossRefPubMed Jin X, Wang J, Xia ZM, Shang CH, Chao QL, Liu YR, Fan HY, Chen DQ, Qiu F, Zhao F. Anti-inflammatory and Anti-oxidative Activities of Paeonol and Its Metabolites Through Blocking MAPK/ERK/p38 Signaling Pathway. Inflammation. 2016;39:434–46.CrossRefPubMed
25.
go back to reference Kim SA, Lee HJ, Ahn KS, Lee EO, Choi SH, Jung SJ, Kim JY, Baek N, Kim SH. Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of matrix metalloproteinases. Biol Pharm Bull. 2009;32:1142–7.CrossRefPubMed Kim SA, Lee HJ, Ahn KS, Lee EO, Choi SH, Jung SJ, Kim JY, Baek N, Kim SH. Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of matrix metalloproteinases. Biol Pharm Bull. 2009;32:1142–7.CrossRefPubMed
26.
go back to reference Zhang L, Tao L, Shi T, Zhang F, Sheng X, Cao Y, Zheng S, Wang A, Qian W, Jiang L, et al. Paeonol inhibits B16F10 melanoma metastasis In vitro and In Vivo via disrupting proinflammatory cytokines-mediated NF-kappaB and STAT3 pathways. IUBMB Life. 2015;67:778–88.CrossRefPubMed Zhang L, Tao L, Shi T, Zhang F, Sheng X, Cao Y, Zheng S, Wang A, Qian W, Jiang L, et al. Paeonol inhibits B16F10 melanoma metastasis In vitro and In Vivo via disrupting proinflammatory cytokines-mediated NF-kappaB and STAT3 pathways. IUBMB Life. 2015;67:778–88.CrossRefPubMed
27.
go back to reference Yao Z, Shulan Z. Inhibition effect of Guizhi-Fuling-decoction on the invasion of hum an cervical cancer. J Ethnopharmacol. 2008;120:25–35.CrossRefPubMed Yao Z, Shulan Z. Inhibition effect of Guizhi-Fuling-decoction on the invasion of hum an cervical cancer. J Ethnopharmacol. 2008;120:25–35.CrossRefPubMed
28.
go back to reference Li D, Zhang Y, Han H, Geng J, Xie X, Zheng J, Wang Y, Zou X. Effect of lichong decoction on expression of IGF-I and proliferating cell nuclear antigen mRNA in rat model of uterine leiomyoma. J Tradit Chin Med. 2012;32:636–40.CrossRefPubMed Li D, Zhang Y, Han H, Geng J, Xie X, Zheng J, Wang Y, Zou X. Effect of lichong decoction on expression of IGF-I and proliferating cell nuclear antigen mRNA in rat model of uterine leiomyoma. J Tradit Chin Med. 2012;32:636–40.CrossRefPubMed
29.
go back to reference Li TF, Lin CC, Tsai HP, Hsu CH, Fu SL. Effects of Kuan-Sin-Yin decoction on immunomodulation and tumorigenesis in mouse tumor models. BMC Complement Altern Med. 2014;14:488.CrossRefPubMedPubMedCentral Li TF, Lin CC, Tsai HP, Hsu CH, Fu SL. Effects of Kuan-Sin-Yin decoction on immunomodulation and tumorigenesis in mouse tumor models. BMC Complement Altern Med. 2014;14:488.CrossRefPubMedPubMedCentral
30.
go back to reference Zhou N, Han SY, Zhou F, Li PP. Anti-tumor effect of Shu-Gan-Liang-Xue decoction in breast cancer is related to the inhibition of aromatase and steroid sulfatase expression. J Ethnopharmacol. 2014;154:687–95.CrossRefPubMed Zhou N, Han SY, Zhou F, Li PP. Anti-tumor effect of Shu-Gan-Liang-Xue decoction in breast cancer is related to the inhibition of aromatase and steroid sulfatase expression. J Ethnopharmacol. 2014;154:687–95.CrossRefPubMed
31.
go back to reference Cao Z, Chen X, Lin W, Zhao J, Zheng L, Ye H, Liao L, Du J. Jiedu Xiaozheng Yin decoction inhibits hepatoma cell proliferation by inducing apoptosis via the mitochondrial-mediated pathway. Mol Med Rep. 2015;12:2800–6.PubMed Cao Z, Chen X, Lin W, Zhao J, Zheng L, Ye H, Liao L, Du J. Jiedu Xiaozheng Yin decoction inhibits hepatoma cell proliferation by inducing apoptosis via the mitochondrial-mediated pathway. Mol Med Rep. 2015;12:2800–6.PubMed
32.
go back to reference Zhang QB, Meng XT, Jia QA, Bu Y, Ren ZG, Zhang BH, Tang ZY. Herbal compound Songyou Yin and moderate swimming suppress growth and metastasis of liver cancer by enhancing immune function. Integr Cancer Ther. 2016, in press. Zhang QB, Meng XT, Jia QA, Bu Y, Ren ZG, Zhang BH, Tang ZY. Herbal compound Songyou Yin and moderate swimming suppress growth and metastasis of liver cancer by enhancing immune function. Integr Cancer Ther. 2016, in press.
33.
go back to reference Yen GC, Chen YL, Sun FM, Chiang YL, Lu SH, Weng CJ. A comparative study on the effectiveness of cis- and trans-form of cinnamic acid treatments for inhibiting invasive activity of human lung adenocarcinoma cells. Eur J Pharm Sci. 2011;44:281–7.CrossRefPubMed Yen GC, Chen YL, Sun FM, Chiang YL, Lu SH, Weng CJ. A comparative study on the effectiveness of cis- and trans-form of cinnamic acid treatments for inhibiting invasive activity of human lung adenocarcinoma cells. Eur J Pharm Sci. 2011;44:281–7.CrossRefPubMed
34.
go back to reference Manikandan P, Murugan RS, Priyadarsini RV, Vinothini G, Nagini S. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci. 2010;86:936–41.CrossRefPubMed Manikandan P, Murugan RS, Priyadarsini RV, Vinothini G, Nagini S. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci. 2010;86:936–41.CrossRefPubMed
35.
go back to reference Kang HS, Kim J, Lee HJ, Kwon BM, Lee DK, Hong SH. LRP1-dependent pepsin clearance induced by 2’-hydroxycinnamaldehyde attenuates breast cancer cell invasion. Int J Biochem Cell Biol. 2014;53:15–23.CrossRefPubMed Kang HS, Kim J, Lee HJ, Kwon BM, Lee DK, Hong SH. LRP1-dependent pepsin clearance induced by 2’-hydroxycinnamaldehyde attenuates breast cancer cell invasion. Int J Biochem Cell Biol. 2014;53:15–23.CrossRefPubMed
36.
go back to reference Jayasooriya RG, Dilshara MG, Park SR, Choi YH, Hyun JW, Chang WY, Kim GY. 18beta-Glycyrrhetinic acid suppresses TNF-alpha induced matrix metalloproteinase-9 and vascular endothelial growth factor by suppressing the Akt-dependent NF-kappaB pathway. Toxicol In Vitro. 2014;28:751–8.CrossRefPubMed Jayasooriya RG, Dilshara MG, Park SR, Choi YH, Hyun JW, Chang WY, Kim GY. 18beta-Glycyrrhetinic acid suppresses TNF-alpha induced matrix metalloproteinase-9 and vascular endothelial growth factor by suppressing the Akt-dependent NF-kappaB pathway. Toxicol In Vitro. 2014;28:751–8.CrossRefPubMed
37.
go back to reference Wang KL, Hsia SM, Chan CJ, Chang FY, Huang CY, Bau DT, Wang PS. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin Ther Targets. 2013;17:337–49.CrossRefPubMed Wang KL, Hsia SM, Chan CJ, Chang FY, Huang CY, Bau DT, Wang PS. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin Ther Targets. 2013;17:337–49.CrossRefPubMed
38.
go back to reference Kwon GT, Cho HJ, Chung WY, Park KK, Moon A, Park JH. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J Nutr Biochem. 2009;20:663–76.CrossRefPubMed Kwon GT, Cho HJ, Chung WY, Park KK, Moon A, Park JH. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J Nutr Biochem. 2009;20:663–76.CrossRefPubMed
39.
go back to reference Virtanen SS, Kukkonen-Macchi A, Vainio M, Elima K, Harkonen PL, Jalkanen S, Yegutkin GG. Adenosine inhibits tumor cell invasion via receptor-independent mechanisms. Mol Cancer Res. 2014;12:1863–74.CrossRefPubMed Virtanen SS, Kukkonen-Macchi A, Vainio M, Elima K, Harkonen PL, Jalkanen S, Yegutkin GG. Adenosine inhibits tumor cell invasion via receptor-independent mechanisms. Mol Cancer Res. 2014;12:1863–74.CrossRefPubMed
40.
go back to reference Gao Y, Jia Z, Kong X, Li Q, Chang DZ, Wei D, Le X, Suyun H, Huang S, Wang L, et al. Combining betulinic acid and mithramycin a effectively suppresses pancreatic cancer by inhibiting proliferation, invasion, and angiogenesis. Cancer Res. 2011;71:5182–93.CrossRefPubMedPubMedCentral Gao Y, Jia Z, Kong X, Li Q, Chang DZ, Wei D, Le X, Suyun H, Huang S, Wang L, et al. Combining betulinic acid and mithramycin a effectively suppresses pancreatic cancer by inhibiting proliferation, invasion, and angiogenesis. Cancer Res. 2011;71:5182–93.CrossRefPubMedPubMedCentral
41.
go back to reference Liu J, Zheng L, Ma L, Wang B, Zhao Y, Wu N, Liu G, Lin X. Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy. J Nutr Biochem. 2014;25:1154–60.CrossRefPubMed Liu J, Zheng L, Ma L, Wang B, Zhao Y, Wu N, Liu G, Lin X. Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy. J Nutr Biochem. 2014;25:1154–60.CrossRefPubMed
42.
go back to reference Guo G, Yao W, Zhang Q, Bo Y. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PLoS One. 2013;8:e72079.CrossRefPubMedPubMedCentral Guo G, Yao W, Zhang Q, Bo Y. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PLoS One. 2013;8:e72079.CrossRefPubMedPubMedCentral
43.
go back to reference Lu JT, He W, Song SS, Wei W. Paeoniflorin inhibited the tumor invasion and metastasis in human hepatocellular carcinoma cells. Bratisl Lek Listy. 2014;115:427–33.PubMed Lu JT, He W, Song SS, Wei W. Paeoniflorin inhibited the tumor invasion and metastasis in human hepatocellular carcinoma cells. Bratisl Lek Listy. 2014;115:427–33.PubMed
44.
go back to reference Yoshida S, Hirakawa N, Ito K, Miura Y, Yagasaki K. Anti-invasive activity of alpha-tocopherol against hepatoma cells in culture via protein kinase C inhibition. J Clin Biochem Nutr. 2011;48:251–7.CrossRefPubMedPubMedCentral Yoshida S, Hirakawa N, Ito K, Miura Y, Yagasaki K. Anti-invasive activity of alpha-tocopherol against hepatoma cells in culture via protein kinase C inhibition. J Clin Biochem Nutr. 2011;48:251–7.CrossRefPubMedPubMedCentral
45.
go back to reference Kim SO, Kim MR. [6]-gingerol prevents disassembly of cell junctions and activities of MMPs in invasive human pancreas cancer cells through ERK/NF- kappa B/snail signal transduction pathway. Evid Based Complement Alternat Med. 2013;2013:761852.PubMedPubMedCentral Kim SO, Kim MR. [6]-gingerol prevents disassembly of cell junctions and activities of MMPs in invasive human pancreas cancer cells through ERK/NF- kappa B/snail signal transduction pathway. Evid Based Complement Alternat Med. 2013;2013:761852.PubMedPubMedCentral
46.
go back to reference Weng CJ, Chou CP, Ho CT, Yen GC. Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol. Mol Nutr Food Res. 2012;56:1304–14.CrossRefPubMed Weng CJ, Chou CP, Ho CT, Yen GC. Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol. Mol Nutr Food Res. 2012;56:1304–14.CrossRefPubMed
47.
go back to reference Yagihashi S, Miura Y, Yagasaki K. Inhibitory effect of gingerol on the proliferation and invasion of hepatoma cells in culture. Cytotechnology. 2008;57:129–36.CrossRefPubMedPubMedCentral Yagihashi S, Miura Y, Yagasaki K. Inhibitory effect of gingerol on the proliferation and invasion of hepatoma cells in culture. Cytotechnology. 2008;57:129–36.CrossRefPubMedPubMedCentral
48.
go back to reference Hsu YL, Hung JY, Tsai YM, Tsai EM, Huang MS, Hou MF, Kuo PL. 6-shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of CC-chemokine ligand 2 (CCL2) in tumor-associated dendritic cells. J Agric Food Chem. 2015;63:1730–8.CrossRefPubMed Hsu YL, Hung JY, Tsai YM, Tsai EM, Huang MS, Hou MF, Kuo PL. 6-shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of CC-chemokine ligand 2 (CCL2) in tumor-associated dendritic cells. J Agric Food Chem. 2015;63:1730–8.CrossRefPubMed
49.
go back to reference Ling H, Yang H, Tan SH, Chui WK, Chew EH. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-kappaB activation. Br J Pharmacol. 2010;161:1763–77.CrossRefPubMedPubMedCentral Ling H, Yang H, Tan SH, Chui WK, Chew EH. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-kappaB activation. Br J Pharmacol. 2010;161:1763–77.CrossRefPubMedPubMedCentral
50.
go back to reference Weng CJ, Wu CF, Huang HW, Ho CT, Yen GC. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol Nutr Food Res. 2010;54:1618–27.CrossRefPubMed Weng CJ, Wu CF, Huang HW, Ho CT, Yen GC. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol Nutr Food Res. 2010;54:1618–27.CrossRefPubMed
51.
go back to reference Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147:992–1009.CrossRefPubMed Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147:992–1009.CrossRefPubMed
52.
go back to reference Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.CrossRefPubMed Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.CrossRefPubMed
53.
go back to reference Hu H, Li Z, Zhu X, Lin R, Peng J, Tao J, Chen L. GuaLou GuiZhi decoction inhibits LPS-induced microglial cell motility through the MAPK signaling pathway. Int J Mol Med. 2013;32:1281–6.PubMed Hu H, Li Z, Zhu X, Lin R, Peng J, Tao J, Chen L. GuaLou GuiZhi decoction inhibits LPS-induced microglial cell motility through the MAPK signaling pathway. Int J Mol Med. 2013;32:1281–6.PubMed
55.
go back to reference Chen Y, Gao C, Ma Y, Qiu F. Pharmacokinetic study of multiple active constituents after oral gavage of Guizhi decoction in rats using a LC-MS/MS method. Eur J Drug Metab Pharmacokinet. 2013;38:283–93.CrossRefPubMed Chen Y, Gao C, Ma Y, Qiu F. Pharmacokinetic study of multiple active constituents after oral gavage of Guizhi decoction in rats using a LC-MS/MS method. Eur J Drug Metab Pharmacokinet. 2013;38:283–93.CrossRefPubMed
56.
go back to reference Wang K, Karin M. Tumor-elicited inflammation and colorectal cancer. Adv Cancer Res. 2015;128:173–96.CrossRefPubMed Wang K, Karin M. Tumor-elicited inflammation and colorectal cancer. Adv Cancer Res. 2015;128:173–96.CrossRefPubMed
57.
go back to reference Solinas G, Marchesi F, Garlanda C, Mantovani A, Allavena P. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev. 2010;29:243–8.CrossRefPubMed Solinas G, Marchesi F, Garlanda C, Mantovani A, Allavena P. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev. 2010;29:243–8.CrossRefPubMed
Metadata
Title
Geijigajakyak decoction inhibits the motility and tumorigenesis of colorectal cancer cells
Authors
Soong-in Lee
Jeong A Bae
Yoo-Seung Ko
Kyoung-in Lee
Hangun Kim
Kyung Keun Kim
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1281-z

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue