Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2010

01-06-2010

Inflammation-mediated promotion of invasion and metastasis

Authors: Graziella Solinas, Federica Marchesi, Cecilia Garlanda, Alberto Mantovani, Paola Allavena

Published in: Cancer and Metastasis Reviews | Issue 2/2010

Login to get access

Abstract

Inflammation has been suggested to represent the seventh hallmark of cancer. Myelomonocytic cells are a key component of cancer-related inflammation. Tumor-associated macrophages and their mediators affect key elements in the multistep process of invasion and metastasis, from interaction with the extracellular matrix to the construction of a pre-metastatic niche. Evidence indicating that inflammatory mediators affect genetic stability and cause persistent epigenetic alterations suggests that inflammatory components of the tumor microenvironment impacts on fundamental mechanisms responsible for the generation of metastatic variants. These results provide impetus for efforts aimed at translating cancer-related inflammation into diagnostic–prognostic markers and innovative therapeutic strategies.
Literature
1.
go back to reference Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.CrossRefPubMed Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.CrossRefPubMed
3.
go back to reference Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.CrossRefPubMed Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.CrossRefPubMed
5.
go back to reference De Palma, M., Murdoch, C., Venneri, M. A., Naldini, L., & Lewis, C. E. (2007). Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol, 28, 519–524.CrossRefPubMed De Palma, M., Murdoch, C., Venneri, M. A., Naldini, L., & Lewis, C. E. (2007). Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol, 28, 519–524.CrossRefPubMed
6.
go back to reference Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol, 22, 231–237. Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol, 22, 231–237.
7.
go back to reference Pollard, J. W. (2009). Trophic macrophages in development and disease. Nat Rev Immunol, 9, 259–270.CrossRefPubMed Pollard, J. W. (2009). Trophic macrophages in development and disease. Nat Rev Immunol, 9, 259–270.CrossRefPubMed
8.
go back to reference Bollrath, J., & Greten, F. R. (2009). IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep, 10, 1314–1319.CrossRefPubMed Bollrath, J., & Greten, F. R. (2009). IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep, 10, 1314–1319.CrossRefPubMed
9.
go back to reference Wang, D., Dubois, R. N., & Richmond, A. (2009). The role of chemokines in intestinal inflammation and cancer. Curr Opin Pharmacol, 9, 688–696.CrossRefPubMed Wang, D., Dubois, R. N., & Richmond, A. (2009). The role of chemokines in intestinal inflammation and cancer. Curr Opin Pharmacol, 9, 688–696.CrossRefPubMed
10.
go back to reference Wels, J., Kaplan, R. N., Rafii, S., & Lyden, D. (2008). Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev, 22, 559–574.CrossRefPubMed Wels, J., Kaplan, R. N., Rafii, S., & Lyden, D. (2008). Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev, 22, 559–574.CrossRefPubMed
11.
go back to reference Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer, 9, 798–809.CrossRefPubMed Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer, 9, 798–809.CrossRefPubMed
12.
go back to reference Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431–436.CrossRefPubMed Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431–436.CrossRefPubMed
14.
go back to reference Giavazzi, R., Garofalo, A., Bani, M. R., Abbate, M., Ghezzi, P., Boraschi, D., et al. (1990). Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. Cancer Res, 50, 4771–4775.PubMed Giavazzi, R., Garofalo, A., Bani, M. R., Abbate, M., Ghezzi, P., Boraschi, D., et al. (1990). Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. Cancer Res, 50, 4771–4775.PubMed
15.
go back to reference Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30, 1073–1081.CrossRefPubMed Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30, 1073–1081.CrossRefPubMed
16.
go back to reference Niwa, T., Tsukamoto, T., Toyoda, T., Mori, A., Tanaka, H., Maekita, T., et al. (2010). Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res, 70, 1430–1440.CrossRefPubMed Niwa, T., Tsukamoto, T., Toyoda, T., Mori, A., Tanaka, H., Maekita, T., et al. (2010). Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res, 70, 1430–1440.CrossRefPubMed
17.
go back to reference Barash, H., Gross, E., Edrei, Y., Ella, E., Israel, A., Cohen, I., et al. (2010). Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks. Proc Natl Acad Sci U S A, 107, 2207–2212.CrossRefPubMed Barash, H., Gross, E., Edrei, Y., Ella, E., Israel, A., Cohen, I., et al. (2010). Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks. Proc Natl Acad Sci U S A, 107, 2207–2212.CrossRefPubMed
18.
go back to reference Ishii, M., Wen, H., Corsa, C. A., Liu, T., Coelho, A. L., Allen, R. M., et al. (2009). Epigenetic regulation of the alternatively activated macrophage phenotype. Blood, 114, 3244–3254.CrossRefPubMed Ishii, M., Wen, H., Corsa, C. A., Liu, T., Coelho, A. L., Allen, R. M., et al. (2009). Epigenetic regulation of the alternatively activated macrophage phenotype. Blood, 114, 3244–3254.CrossRefPubMed
19.
go back to reference Mantovani, A., & Locati, M. (2009). Orchestration of macrophage polarization. Blood, 114, 3135–3136.CrossRefPubMed Mantovani, A., & Locati, M. (2009). Orchestration of macrophage polarization. Blood, 114, 3135–3136.CrossRefPubMed
20.
go back to reference Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2009). An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 139, 693–706.CrossRefPubMed Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2009). An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 139, 693–706.CrossRefPubMed
21.
go back to reference Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer, 3, 453–458.CrossRefPubMed Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer, 3, 453–458.CrossRefPubMed
22.
go back to reference Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res, 69, 4800–4809.CrossRefPubMed Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res, 69, 4800–4809.CrossRefPubMed
23.
go back to reference Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 23, 549–555.CrossRefPubMed Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 23, 549–555.CrossRefPubMed
24.
go back to reference Martinez, F. O., Helming, L., & Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol, 27, 451–483.CrossRefPubMed Martinez, F. O., Helming, L., & Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol, 27, 451–483.CrossRefPubMed
25.
go back to reference Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol, 184, 702–712.CrossRefPubMed Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol, 184, 702–712.CrossRefPubMed
26.
go back to reference Wilcox, R. A., Wada, D. A., Ziesmer, S. C., Elsawa, S. F., Comfere, N. I., Dietz, A. B., et al. (2009). Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood, 114, 2936–2944.CrossRefPubMed Wilcox, R. A., Wada, D. A., Ziesmer, S. C., Elsawa, S. F., Comfere, N. I., Dietz, A. B., et al. (2009). Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood, 114, 2936–2944.CrossRefPubMed
27.
go back to reference Zheng, Y., Cai, Z., Wang, S., Zhang, X., Qian, J., Hong, S., et al. (2009). Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood, 114, 3625–3628.CrossRefPubMed Zheng, Y., Cai, Z., Wang, S., Zhang, X., Qian, J., Hong, S., et al. (2009). Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood, 114, 3625–3628.CrossRefPubMed
28.
go back to reference Jaiswal, S., Jamieson, C. H., Pang, W. W., Park, C. Y., Chao, M. P., Majeti, R., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138, 271–285.CrossRefPubMed Jaiswal, S., Jamieson, C. H., Pang, W. W., Park, C. Y., Chao, M. P., Majeti, R., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138, 271–285.CrossRefPubMed
29.
go back to reference Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15, 35–44.CrossRefPubMed Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15, 35–44.CrossRefPubMed
30.
go back to reference Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol, 176, 5023–5032.PubMed Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol, 176, 5023–5032.PubMed
31.
go back to reference Kim, S., Takahashi, H., Lin, W.-W., Descargues, P., Grivennikov, S., Kim, Y., et al. (2009). Carcinoma produced factors activate myeloid cells via TLR2 to stimulate metastasis. Nature, 457, 102–106.CrossRefPubMed Kim, S., Takahashi, H., Lin, W.-W., Descargues, P., Grivennikov, S., Kim, Y., et al. (2009). Carcinoma produced factors activate myeloid cells via TLR2 to stimulate metastasis. Nature, 457, 102–106.CrossRefPubMed
32.
go back to reference Kuang, D. M., Wu, Y., Chen, N., Cheng, J., Zhuang, S. M., & Zheng, L. (2007). Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood, 110, 587–595.CrossRefPubMed Kuang, D. M., Wu, Y., Chen, N., Cheng, J., Zhuang, S. M., & Zheng, L. (2007). Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood, 110, 587–595.CrossRefPubMed
33.
go back to reference Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res, 65, 5278–5283.CrossRefPubMed Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res, 65, 5278–5283.CrossRefPubMed
34.
go back to reference Priceman, S. J., Sung, J. L., Shaposhnik, Z., Burton, J. B., Torres-Collado, A. X., Moughon, D. L., et al. (2010). Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood, 115, 1461–1471.CrossRefPubMed Priceman, S. J., Sung, J. L., Shaposhnik, Z., Burton, J. B., Torres-Collado, A. X., Moughon, D. L., et al. (2010). Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood, 115, 1461–1471.CrossRefPubMed
35.
go back to reference Zhang, J., Patel, L., & Pienta, K. J. (2010). CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev, 21, 41–48.CrossRefPubMed Zhang, J., Patel, L., & Pienta, K. J. (2010). CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev, 21, 41–48.CrossRefPubMed
36.
go back to reference Dehmel, S., Wang, S., Schmidt, C., Kiss, E., Loewe, R. P., Chilla, S., et al. (2010). Chemokine receptor Ccr5 deficiency induces alternative macrophage activation and improves long-term renal allograft outcome. Eur J Immunol, 40, 267–278.CrossRefPubMed Dehmel, S., Wang, S., Schmidt, C., Kiss, E., Loewe, R. P., Chilla, S., et al. (2010). Chemokine receptor Ccr5 deficiency induces alternative macrophage activation and improves long-term renal allograft outcome. Eur J Immunol, 40, 267–278.CrossRefPubMed
37.
go back to reference Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and IL-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem, 284, 34342–34354.CrossRefPubMed Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and IL-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem, 284, 34342–34354.CrossRefPubMed
38.
go back to reference Balkwill, F., & Mantovani, A. (2010). Cancer and Inflammation: Implications for Pharmacology and Therapeutics. Clin Pharmacol Ther (in press). Balkwill, F., & Mantovani, A. (2010). Cancer and Inflammation: Implications for Pharmacology and Therapeutics. Clin Pharmacol Ther (in press).
39.
go back to reference Aspord, C., Pedroza-Gonzalez, A., Gallegos, M., Tindle, S., Burton, E. C., Su, D., et al. (2007). Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med, 204, 1037–1047.CrossRefPubMed Aspord, C., Pedroza-Gonzalez, A., Gallegos, M., Tindle, S., Burton, E. C., Su, D., et al. (2007). Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med, 204, 1037–1047.CrossRefPubMed
40.
go back to reference DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16, 91–102.CrossRefPubMed DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16, 91–102.CrossRefPubMed
41.
go back to reference de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7, 411–423.CrossRefPubMed de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7, 411–423.CrossRefPubMed
42.
go back to reference Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17, 121–134.CrossRefPubMed Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17, 121–134.CrossRefPubMed
43.
go back to reference Markiewski, M. M., DeAngelis, R. A., Benencia, F., Ricklin-Lichtsteiner, S. K., Koutoulaki, A., Gerard, C., et al. (2008). Modulation of the antitumor immune response by complement. Nat Immunol, 9, 1225–1235.CrossRefPubMed Markiewski, M. M., DeAngelis, R. A., Benencia, F., Ricklin-Lichtsteiner, S. K., Koutoulaki, A., Gerard, C., et al. (2008). Modulation of the antitumor immune response by complement. Nat Immunol, 9, 1225–1235.CrossRefPubMed
44.
go back to reference Erez, N., Truitt, M., Olson, P., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17, 135–147.CrossRefPubMed Erez, N., Truitt, M., Olson, P., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17, 135–147.CrossRefPubMed
45.
go back to reference Cassatella, M. A., Locati, M., & Mantovani, A. (2009). Never underestimate the power of a neutrophil. Immunity, 31, 698–700.CrossRefPubMed Cassatella, M. A., Locati, M., & Mantovani, A. (2009). Never underestimate the power of a neutrophil. Immunity, 31, 698–700.CrossRefPubMed
46.
47.
go back to reference Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C., & Lo-Man, R. (2009). Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity, 31, 761–771.CrossRefPubMed Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C., & Lo-Man, R. (2009). Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity, 31, 761–771.CrossRefPubMed
48.
go back to reference Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A, 103, 12493–12498.CrossRefPubMed Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A, 103, 12493–12498.CrossRefPubMed
49.
go back to reference Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. J Exp Med, 181, 435–440.CrossRefPubMed Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. J Exp Med, 181, 435–440.CrossRefPubMed
50.
go back to reference Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil (TAN) phenotype by TGF-beta: “N1” versus “N2” TAN—a new paradigm? Cancer Cell, 16, 183–194.CrossRefPubMed Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil (TAN) phenotype by TGF-beta: “N1” versus “N2” TAN—a new paradigm? Cancer Cell, 16, 183–194.CrossRefPubMed
52.
go back to reference Nguyen, D. X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138, 51–62.CrossRefPubMed Nguyen, D. X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138, 51–62.CrossRefPubMed
53.
go back to reference Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol, 8, 1369–1375.CrossRefPubMed Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol, 8, 1369–1375.CrossRefPubMed
54.
go back to reference Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the “soil”: the premetastatic niche. Cancer Res, 66, 11089–11093.CrossRefPubMed Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the “soil”: the premetastatic niche. Cancer Res, 66, 11089–11093.CrossRefPubMed
55.
go back to reference Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.CrossRefPubMed Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.CrossRefPubMed
56.
go back to reference Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer, 8, 618–631.CrossRefPubMed Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer, 8, 618–631.CrossRefPubMed
57.
go back to reference Padua, D., Zhang, X. H., Wang, Q., Nadal, C., Gerald, W. L., Gomis, R. R., et al. (2008). TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell, 133, 66–77.CrossRefPubMed Padua, D., Zhang, X. H., Wang, Q., Nadal, C., Gerald, W. L., Gomis, R. R., et al. (2008). TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell, 133, 66–77.CrossRefPubMed
58.
go back to reference Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Mantovani, A., & Marme, D. (1996). Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood, 87, 3336–3343.PubMed Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Mantovani, A., & Marme, D. (1996). Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood, 87, 3336–3343.PubMed
59.
go back to reference Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.CrossRefPubMed Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.CrossRefPubMed
60.
go back to reference Gocheva, V., Wang, H. W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., et al. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 24, 241–255.CrossRefPubMed Gocheva, V., Wang, H. W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., et al. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 24, 241–255.CrossRefPubMed
61.
go back to reference Ding, T., Xu, J., Wang, F., Shi, M., Zhang, Y., Li, S. P., et al. (2009). High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum Pathol, 40, 381–389.CrossRefPubMed Ding, T., Xu, J., Wang, F., Shi, M., Zhang, Y., Li, S. P., et al. (2009). High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum Pathol, 40, 381–389.CrossRefPubMed
62.
go back to reference Kuang, D. M., Zhao, Q., Peng, C., Xu, J., Zhang, J. P., Wu, C., et al. (2009). Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med, 206, 1327–1337.CrossRefPubMed Kuang, D. M., Zhao, Q., Peng, C., Xu, J., Zhang, J. P., Wu, C., et al. (2009). Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med, 206, 1327–1337.CrossRefPubMed
63.
go back to reference Zhang, J. P., Yan, J., Xu, J., Pang, X. H., Chen, M. S., Li, L., et al. (2009). Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol, 50, 980–989.CrossRefPubMed Zhang, J. P., Yan, J., Xu, J., Pang, X. H., Chen, M. S., Li, L., et al. (2009). Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol, 50, 980–989.CrossRefPubMed
64.
go back to reference DeVita, V. T., Jr., & Costa, J. (2010). Toward a personalized treatment of Hodgkin's disease. N Engl J Med, 362, 942–943.CrossRefPubMed DeVita, V. T., Jr., & Costa, J. (2010). Toward a personalized treatment of Hodgkin's disease. N Engl J Med, 362, 942–943.CrossRefPubMed
65.
go back to reference Steidl, C., Lee, T., Shah, S. P., Farinha, P., Han, G., Nayar, T., et al. (2010). Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med, 362, 875–885.CrossRefPubMed Steidl, C., Lee, T., Shah, S. P., Farinha, P., Han, G., Nayar, T., et al. (2010). Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med, 362, 875–885.CrossRefPubMed
66.
go back to reference Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: form homeostasis to inflammation, cancer and metastasis. Cancer Metastasis Reviews, in press (this issue). Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: form homeostasis to inflammation, cancer and metastasis. Cancer Metastasis Reviews, in press (this issue).
Metadata
Title
Inflammation-mediated promotion of invasion and metastasis
Authors
Graziella Solinas
Federica Marchesi
Cecilia Garlanda
Alberto Mantovani
Paola Allavena
Publication date
01-06-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9227-2

Other articles of this Issue 2/2010

Cancer and Metastasis Reviews 2/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine