Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

Hominis Placenta facilitates hair re-growth by upregulating cellular proliferation and expression of fibroblast growth factor-7

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Hominis Placenta (HP) known as a restorative medicine in Traditional Chinese Medicine (TCM), has been widely applied in the clinics of Korea and China as an anti-aging agent to enhance the regeneration of tissue. This study was conducted to investigate whether topical treatment of HP promotes hair regrowth in the animal model.

Methods

The dorsal hairs of 8-week-old C57BL/6 mice were depilated to synchronize hair follicles to the anagen phase. HP was applied topically once a day for 15 days. Hair growth was evaluated visually and microscopically. The incorporation of bromodeoxyuridine (BrdU) and expression of proliferating cell nuclear antigen (PCNA), fibroblast growth factor-7 (FGF-7) in dorsal skin tissue was examined by immunohistochemical analysis. Reverse transcription polymerase chain reaction (RT-PCR) was used to measure the mRNA expression of FGF-7.

Results

HP exhibited potent hair growth-promoting activity in C57BL/6 mice. Gross examination indicated that HP markedly increased hair regrowth as well as hair density and diameter. Histologic analysis showed that HP treatment enhanced the anagen induction of hair follicles.
Immunohistochemical analysis revealed that BrdU incorporation and the expressions of PCNA were increased by treatment of HP. HP treatment significantly increased the expression of FGF-7, which plays pivotal roles to maintain anagen phase both protein and mRNA levels.

Conclusions

Taken together, our results indicate that HP has a potent hair growth-promoting activity; therefore, it may be a good candidate for the treatment of alopecia.
Literature
1.
go back to reference Ellis JA, Stebbing M, Harrap SB. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J Invest Dermatol. 2001;116(3):452–5.CrossRefPubMed Ellis JA, Stebbing M, Harrap SB. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J Invest Dermatol. 2001;116(3):452–5.CrossRefPubMed
3.
go back to reference Hadshiew IM, Foitzik K, Arck PC, Paus R. Burden of hair loss: stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J Invest Dermatol. 2004;123(3):455–7.CrossRefPubMed Hadshiew IM, Foitzik K, Arck PC, Paus R. Burden of hair loss: stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J Invest Dermatol. 2004;123(3):455–7.CrossRefPubMed
4.
go back to reference Gilhar A, Keren A, Shemer A, d'Ovidio R, Ullmann Y, Paus R. Autoimmune Disease Induction in a Healthy Human Organ: A Humanized Mouse Model of Alopecia Areata. J Invest Dermatol. 2013;133(3):844–7.CrossRefPubMed Gilhar A, Keren A, Shemer A, d'Ovidio R, Ullmann Y, Paus R. Autoimmune Disease Induction in a Healthy Human Organ: A Humanized Mouse Model of Alopecia Areata. J Invest Dermatol. 2013;133(3):844–7.CrossRefPubMed
5.
go back to reference Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Komarov PG, Maurer M, Gilchrest BA, Gudkov AV. p53 is essential for chemotherapy-induced hair loss. Cancer Res. 2000;60(18):5002–6.PubMed Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Komarov PG, Maurer M, Gilchrest BA, Gudkov AV. p53 is essential for chemotherapy-induced hair loss. Cancer Res. 2000;60(18):5002–6.PubMed
7.
go back to reference Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81(1):449–94.PubMed Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81(1):449–94.PubMed
8.
go back to reference Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004;150(2):186–94.CrossRefPubMed Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004;150(2):186–94.CrossRefPubMed
10.
go back to reference Zhao L, Li JH, Zhu DZ, Ji BP. Principal component analysis of nutrients in five varieties of velvet antler (Cornu Cervi Pantotrichum). Guang pu. 2010;30(9):2571–5.PubMed Zhao L, Li JH, Zhu DZ, Ji BP. Principal component analysis of nutrients in five varieties of velvet antler (Cornu Cervi Pantotrichum). Guang pu. 2010;30(9):2571–5.PubMed
11.
go back to reference Wang J, He G, Fu W, Su B, Wang W, Zhang Y, Lu Y, He M, Zhu Z. Extraction and sequencing of trace DNA from cornu Cervi pantotrichum. China J Chinese Meter Med. 1997;22(10):579–83. 638. Wang J, He G, Fu W, Su B, Wang W, Zhang Y, Lu Y, He M, Zhu Z. Extraction and sequencing of trace DNA from cornu Cervi pantotrichum. China J Chinese Meter Med. 1997;22(10):579–83. 638.
12.
go back to reference Zhang S, Li F. Determination of amino acids in cornu cervi pantotrichum of different specifications. China J Chinese Meter Med. 2013;38(12):1919–23. Zhang S, Li F. Determination of amino acids in cornu cervi pantotrichum of different specifications. China J Chinese Meter Med. 2013;38(12):1919–23.
13.
go back to reference Liu Y, Zhang GJ, Sun SQ, Noda I. Study on similar traditional Chinese medicines cornu Cervi pantotrichum, cornu Cervi and cornu Cervi degelatinatum by FT-IR and 2D-IR correlation spectroscopy. J Pharmaceut Biomed. 2010;52(4):631–5.CrossRef Liu Y, Zhang GJ, Sun SQ, Noda I. Study on similar traditional Chinese medicines cornu Cervi pantotrichum, cornu Cervi and cornu Cervi degelatinatum by FT-IR and 2D-IR correlation spectroscopy. J Pharmaceut Biomed. 2010;52(4):631–5.CrossRef
14.
go back to reference Wu CH, Chang GY, Chang WC, Hsu CT, Chen RS. Wound healing effects of porcine placental extracts on rats with thermal injury. Br J Dermatol. 2003;148(2):236–45.CrossRefPubMed Wu CH, Chang GY, Chang WC, Hsu CT, Chen RS. Wound healing effects of porcine placental extracts on rats with thermal injury. Br J Dermatol. 2003;148(2):236–45.CrossRefPubMed
15.
go back to reference Seo TB, Han IS, Yoon JH, Seol IC, Kim YS, Jo HK, et al. Growth-promoting activity of Hominis Placenta extract on regenerating sciatic nerve. Acta Pharmacol Sin. 2006;27(1):50–8.CrossRefPubMed Seo TB, Han IS, Yoon JH, Seol IC, Kim YS, Jo HK, et al. Growth-promoting activity of Hominis Placenta extract on regenerating sciatic nerve. Acta Pharmacol Sin. 2006;27(1):50–8.CrossRefPubMed
16.
go back to reference Hauser GA. Placental Extract Injections in the Treatment of Loss of Hair in Women. Int J Tissue React. 1982;4(2):159–63.PubMed Hauser GA. Placental Extract Injections in the Treatment of Loss of Hair in Women. Int J Tissue React. 1982;4(2):159–63.PubMed
17.
go back to reference Zhang D, Lijuan G, Jingjie L, Zheng L, Wang C, Wang Z, et al. Cow placenta extract promotes murine hair growth through enhancing the insulin - like growth factor-1. Indian J Dermatol. 2011;56(1):14–8.CrossRefPubMedPubMedCentral Zhang D, Lijuan G, Jingjie L, Zheng L, Wang C, Wang Z, et al. Cow placenta extract promotes murine hair growth through enhancing the insulin - like growth factor-1. Indian J Dermatol. 2011;56(1):14–8.CrossRefPubMedPubMedCentral
18.
go back to reference Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol. 1989;18(3):311–8.CrossRefPubMed Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol. 1989;18(3):311–8.CrossRefPubMed
19.
go back to reference Ito M, Kizawa K, Hamada K, Cotsarelis G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation. 2004;72(9-10):548–57.CrossRefPubMed Ito M, Kizawa K, Hamada K, Cotsarelis G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation. 2004;72(9-10):548–57.CrossRefPubMed
20.
go back to reference Shibasaki T, Odagiri E, Shizume K, Ling N. Corticotropin-Releasing Factor-Like Activity in Human Placental Extracts. J Clin Endocr Metab. 1982;55(2):384–6.CrossRefPubMed Shibasaki T, Odagiri E, Shizume K, Ling N. Corticotropin-Releasing Factor-Like Activity in Human Placental Extracts. J Clin Endocr Metab. 1982;55(2):384–6.CrossRefPubMed
21.
go back to reference Cleal JK, Lewis RM. The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinol. 2008;20(4):419–26.CrossRefPubMed Cleal JK, Lewis RM. The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinol. 2008;20(4):419–26.CrossRefPubMed
22.
go back to reference Yang GQ, Zou XH. Research Advances on Chemical Compositions, Pharmacological Effect and Clinic Application of Placenta and Its Extract from Human and Animals. J Shenyang Agri U. 2003;34:150-154. Yang GQ, Zou XH. Research Advances on Chemical Compositions, Pharmacological Effect and Clinic Application of Placenta and Its Extract from Human and Animals. J Shenyang Agri U. 2003;34:150-154.
23.
go back to reference Lange-Consiglio A, Corradetti B, Bizzaro D, Magatti M, Ressel L, Tassan S, et al. Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. J Tissue Eng Regen M. 2012;6(8):622–35.CrossRef Lange-Consiglio A, Corradetti B, Bizzaro D, Magatti M, Ressel L, Tassan S, et al. Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. J Tissue Eng Regen M. 2012;6(8):622–35.CrossRef
24.
go back to reference Kaushal V, Verma K, Manocha S, Hooda HS, Das BP. Clinical evaluation of human placental extract (placentrex) in radiation-induced oral mucositis. Int J Tissue React. 2001;23(3):105–10.PubMed Kaushal V, Verma K, Manocha S, Hooda HS, Das BP. Clinical evaluation of human placental extract (placentrex) in radiation-induced oral mucositis. Int J Tissue React. 2001;23(3):105–10.PubMed
25.
go back to reference Chandanwale A, Langade D, Mohod V, Sinha S, Ramteke A, Bakhshi GD, et al. Comparative evaluation of human placental extract for its healing potential in surgical wounds after orthopaedic surgery: an open, randomised, comparative study. J Indian Med Assoc. 2008;106(6):405–8.PubMed Chandanwale A, Langade D, Mohod V, Sinha S, Ramteke A, Bakhshi GD, et al. Comparative evaluation of human placental extract for its healing potential in surgical wounds after orthopaedic surgery: an open, randomised, comparative study. J Indian Med Assoc. 2008;106(6):405–8.PubMed
26.
go back to reference Hijikata Y, Kano T, Xi L. Treatment for intractable anemia with the traditional Chinese medicines Hominis Placenta and Cervi Cornus Colla (deer antler glue). Inter J Gen Med. 2009;2:83–90.CrossRef Hijikata Y, Kano T, Xi L. Treatment for intractable anemia with the traditional Chinese medicines Hominis Placenta and Cervi Cornus Colla (deer antler glue). Inter J Gen Med. 2009;2:83–90.CrossRef
27.
go back to reference Choi JY, Lee K, Lee SM, Yoo SH, Hwang SG, Lee SW, et al. Efficacy and safety of human placental extract for alcoholic and nonalcoholic steatohepatitis: an open-label, randomized, comparative study. Biol Pharm Bull. 2014;37(12):1853–9.CrossRefPubMed Choi JY, Lee K, Lee SM, Yoo SH, Hwang SG, Lee SW, et al. Efficacy and safety of human placental extract for alcoholic and nonalcoholic steatohepatitis: an open-label, randomized, comparative study. Biol Pharm Bull. 2014;37(12):1853–9.CrossRefPubMed
28.
go back to reference Datta P, Bhattacharyya D. Spectroscopic and chromatographic evidences of NADPH in human placental extract used as wound healer. J Pharmaceut Biomed. 2004;34(5):1091–8.CrossRef Datta P, Bhattacharyya D. Spectroscopic and chromatographic evidences of NADPH in human placental extract used as wound healer. J Pharmaceut Biomed. 2004;34(5):1091–8.CrossRef
29.
go back to reference Chakraborty PD, Bhattacharyya D. Isolation of fibronectin type III like peptide from human placental extract used as wound healer. J Chromatogr B. 2005;818(1):67–73.CrossRef Chakraborty PD, Bhattacharyya D. Isolation of fibronectin type III like peptide from human placental extract used as wound healer. J Chromatogr B. 2005;818(1):67–73.CrossRef
30.
go back to reference Chakraborty PD, De D, Bandyopadhyay S, Bhattacharyya D. Human aqueous placental extract as a wound healer. J Wound Care. 2009;18(11):462. 464-467.CrossRefPubMed Chakraborty PD, De D, Bandyopadhyay S, Bhattacharyya D. Human aqueous placental extract as a wound healer. J Wound Care. 2009;18(11):462. 464-467.CrossRefPubMed
31.
go back to reference De D, Chakraborty PD, Bhattacharyya D. Analysis of free and bound NADPH in aqueous extract of human placenta used as wound healer. J Chromatogr B. 2009;877(24):2435–42.CrossRef De D, Chakraborty PD, Bhattacharyya D. Analysis of free and bound NADPH in aqueous extract of human placenta used as wound healer. J Chromatogr B. 2009;877(24):2435–42.CrossRef
32.
go back to reference Logan A, Weatherhead B. Effects of alpha-melanocyte-stimulating hormone and [8-arginine]-vasotocin upon melanogenesis in hair follicle melanocytes in vitro. J Endocrinol. 1981;91(3):501–7.CrossRefPubMed Logan A, Weatherhead B. Effects of alpha-melanocyte-stimulating hormone and [8-arginine]-vasotocin upon melanogenesis in hair follicle melanocytes in vitro. J Endocrinol. 1981;91(3):501–7.CrossRefPubMed
33.
go back to reference Burgos H. Angiogenic factor from human term placenta. Purification and partial characterization. Eur J Clin Invest. 1986;16(6):486–93.CrossRefPubMed Burgos H. Angiogenic factor from human term placenta. Purification and partial characterization. Eur J Clin Invest. 1986;16(6):486–93.CrossRefPubMed
34.
go back to reference Chakraborty PD, Bhattacharyya D, Pal S, Ali N. In vitro induction of nitric oxide by mouse peritoneal macrophages treated with human placental extract. Int Immunopharmacol. 2006;6(1):100–7.CrossRefPubMed Chakraborty PD, Bhattacharyya D, Pal S, Ali N. In vitro induction of nitric oxide by mouse peritoneal macrophages treated with human placental extract. Int Immunopharmacol. 2006;6(1):100–7.CrossRefPubMed
35.
go back to reference Sharma K, Mukherjee C, Roy S, De D, Bhattacharyya D. Human placental extract mediated inhibition of proteinase K: implications of heparin and glycoproteins in wound physiology. J Cell Physiol. 2014;229(9):1212–23.CrossRefPubMed Sharma K, Mukherjee C, Roy S, De D, Bhattacharyya D. Human placental extract mediated inhibition of proteinase K: implications of heparin and glycoproteins in wound physiology. J Cell Physiol. 2014;229(9):1212–23.CrossRefPubMed
36.
go back to reference Joshi M, Fuller LR, Batchelor GC. L-arginine metabolites regulate DNA synthesis and nitric oxide synthase activity in cultured human dermal microvascular endothelial cells--potential positive and negative regulators of angiogenesis derived from L-arginine. Cancer Invest. 1999;17(4):235–44.CrossRefPubMed Joshi M, Fuller LR, Batchelor GC. L-arginine metabolites regulate DNA synthesis and nitric oxide synthase activity in cultured human dermal microvascular endothelial cells--potential positive and negative regulators of angiogenesis derived from L-arginine. Cancer Invest. 1999;17(4):235–44.CrossRefPubMed
37.
go back to reference Stuehr DJ, Gross SS, Sakuma I, Levi R, Nathan CF. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med. 1989;169(3):1011–20.CrossRefPubMed Stuehr DJ, Gross SS, Sakuma I, Levi R, Nathan CF. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med. 1989;169(3):1011–20.CrossRefPubMed
38.
go back to reference Rushton DH, Ramsay ID, James KC, Norris MJ, Gilkes JJH. Biochemical and Trichological Characterization of Diffuse Alopecia in Women. Br J Dermatol. 1990;123(2):187–97.CrossRefPubMed Rushton DH, Ramsay ID, James KC, Norris MJ, Gilkes JJH. Biochemical and Trichological Characterization of Diffuse Alopecia in Women. Br J Dermatol. 1990;123(2):187–97.CrossRefPubMed
39.
go back to reference Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.PubMed Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.PubMed
40.
go back to reference Housley RM, Morris CF, Boyle W, Ring B, Biltz R, Tarpley JE, et al. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J Clin Invest. 1994;94(5):1764–77.CrossRefPubMedPubMedCentral Housley RM, Morris CF, Boyle W, Ring B, Biltz R, Tarpley JE, et al. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J Clin Invest. 1994;94(5):1764–77.CrossRefPubMedPubMedCentral
41.
go back to reference Booth C, Potten CS. Keratinocyte growth factor increases hair follicle survival following cytotoxic insult. J Invest Dermatol. 2000;114(4):667–73.CrossRefPubMed Booth C, Potten CS. Keratinocyte growth factor increases hair follicle survival following cytotoxic insult. J Invest Dermatol. 2000;114(4):667–73.CrossRefPubMed
42.
go back to reference Braun S, Krampert M, Bodo E, Kumin A, Born-Berclaz C, Paus R, et al. Keratinocyte growth factor protects epidermis and hair follicles from cell death induced by UV irradiation, chemotherapeutic or cytotoxic agents. J Cell Sci. 2006;119(23):4841–9.CrossRefPubMed Braun S, Krampert M, Bodo E, Kumin A, Born-Berclaz C, Paus R, et al. Keratinocyte growth factor protects epidermis and hair follicles from cell death induced by UV irradiation, chemotherapeutic or cytotoxic agents. J Cell Sci. 2006;119(23):4841–9.CrossRefPubMed
43.
go back to reference Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Invest Derm Symp P. 2003;8(1):46–55.CrossRef Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Invest Derm Symp P. 2003;8(1):46–55.CrossRef
44.
go back to reference Rosenquist TA, Martin GR. Fibroblast growth factor signalling in the hair growth cycle: expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle. Dev Dynam. 1996;205(4):379–86.CrossRef Rosenquist TA, Martin GR. Fibroblast growth factor signalling in the hair growth cycle: expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle. Dev Dynam. 1996;205(4):379–86.CrossRef
45.
go back to reference Kawano M, Komi-Kuramochi A, Asada M, Suzuki M, Oki J, Jiang J, et al. Comprehensive analysis of FGF and FGFR expression in skin: FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. J Invest Dermatol. 2005;124(5):877–85.CrossRefPubMed Kawano M, Komi-Kuramochi A, Asada M, Suzuki M, Oki J, Jiang J, et al. Comprehensive analysis of FGF and FGFR expression in skin: FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. J Invest Dermatol. 2005;124(5):877–85.CrossRefPubMed
Metadata
Title
Hominis Placenta facilitates hair re-growth by upregulating cellular proliferation and expression of fibroblast growth factor-7
Publication date
01-12-2016
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1180-3

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue