Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2015

Open Access 01-12-2015 | Research article

Growth hormone (GH) dose-dependent IGF-I response relates to pubertal height gain

Authors: Elena Lundberg, Berit Kriström, Bjorn Jonsson, Kerstin Albertsson-Wikland, on behalf of the study group

Published in: BMC Endocrine Disorders | Issue 1/2015

Login to get access

Abstract

Background

Responsiveness to GH treatment can be estimated by both growth and ∆IGF-I. The primary aim of the present study was to investigate if mimicking the physiological increase during puberty in GH secretion, by using a higher GH dose could lead to pubertal IGFs in short children with low GH secretion. The secondary aim was to explore the relationship between IGF-I, IGFBP-3 and the IGF-I/IGFBP-3 ratio and gain in height.

Methods

A multicentre, randomized, clinical trial (TRN88-177) in 104 children (90 boys), who had received GH 33 μg/kg/day during at least 1 prepubertal year. They were followed from GH start to adult height (mean, 7.5 years; range, 4.6–10.7). At onset of puberty, children were randomized into three groups, to receive 67 μg/kg/day (GH67) given once (GH67x1; n = 30) or divided into two daily injection (GH33x2; n = 36), or to remain on a single 33 μg/kg/day dose (GH33x1; n = 38). The outcome measures were change and obtained mean on-treatment IGF-ISDS, IGFBP3SDS and IGF-I/IGFBP3 ratioSDS during prepuberty and puberty. These variables were assessed in relation to prepubertal, pubertal and total gain in heightSDS.

Results

Mean prepubertal increases 1 year after GH start were: 2.1 IGF-ISDS, 0.6 IGFBP3SDS and 1.5 IGF-I/IGFBP3ratioSDS. A significant positive correlation was found between prepubertal ∆IGFs and both prepubertal and total gain in heightSDS. During puberty changes in IGFs were GH dose-dependent: mean pubertal level of IGF-ISDS was higher in GH67 vs GH33 (p = 0.031). First year pubertal ∆IGF-ISDS was significantly higher in the GH67vs GH33 group (0.5 vs −0.1, respectively, p = 0.007), as well as ∆IGF-ISDS to the pubertal mean level (0.2 vs −0.2, p = 0.028). In multivariate analyses, the prepubertal increase in ‘∆IGF-ISDS from GH start’ and the ‘GH dose-dependent pubertal ∆IGF-ISDS’ were the most important variables for explaining variation in prepubertal (21 %), pubertal (26 %) and total (28 %) gain in heightSDS.

Trial registration

TRN 88–177, not applicable 1988.

Conclusion

The dose-dependent change in IGFs was related to a dose-dependent pubertal gain in heightSDS. The attempt to mimic normal physiology by giving a higher GH dose during puberty was associated with both an increase in IGF-I and a dose-dependent gain in heightSDS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Renehan AG, Zwahlen M, Minder C, O'Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet. 2004;363:1346–53.CrossRefPubMed Renehan AG, Zwahlen M, Minder C, O'Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet. 2004;363:1346–53.CrossRefPubMed
3.
go back to reference Rudman D, Moffitt SD, Fernhoff PM, McKenzie WJ, Kenny JM, Bain RP. The relation between growth velocity and serum somatomedin C concentration. J Clin Endocrinol Metab. 1981;52:622–7.CrossRefPubMed Rudman D, Moffitt SD, Fernhoff PM, McKenzie WJ, Kenny JM, Bain RP. The relation between growth velocity and serum somatomedin C concentration. J Clin Endocrinol Metab. 1981;52:622–7.CrossRefPubMed
4.
go back to reference Albertsson-Wikland K, Hall K. Growth hormone treatment in short children: relationship between growth and serum insulin-like growth factor I and II levels*. J Clin Endocrinol Metab. 1987;65:671–8.CrossRefPubMed Albertsson-Wikland K, Hall K. Growth hormone treatment in short children: relationship between growth and serum insulin-like growth factor I and II levels*. J Clin Endocrinol Metab. 1987;65:671–8.CrossRefPubMed
5.
go back to reference Kriström B, Jansson C, Rosberg S, Albertsson-Wikland K. Growth response to growth hormone (GH) treatment relates to serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in short children with various GH secretion capacities. Swedish Study Group for Growth Hormone Treatment. J Clin Endocrinol Metab. 1997;82:2889–98.PubMed Kriström B, Jansson C, Rosberg S, Albertsson-Wikland K. Growth response to growth hormone (GH) treatment relates to serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in short children with various GH secretion capacities. Swedish Study Group for Growth Hormone Treatment. J Clin Endocrinol Metab. 1997;82:2889–98.PubMed
6.
go back to reference Kamp GA, Wit JM. High-dose growth hormone therapy in idiopathic short stature. Horm Res. 1998;49:67–72.CrossRef Kamp GA, Wit JM. High-dose growth hormone therapy in idiopathic short stature. Horm Res. 1998;49:67–72.CrossRef
7.
go back to reference Cohen P, Bright GM, Rogol AD, Kappelgaard AM, Rosenfeld RG, Group ANCT. Effects of dose and gender on the growth and growth factor response to GH in GH-deficient children: implications for efficacy and safety. J Clin Endocrinol Metab. 2002;87:90–8.CrossRefPubMed Cohen P, Bright GM, Rogol AD, Kappelgaard AM, Rosenfeld RG, Group ANCT. Effects of dose and gender on the growth and growth factor response to GH in GH-deficient children: implications for efficacy and safety. J Clin Endocrinol Metab. 2002;87:90–8.CrossRefPubMed
8.
go back to reference Tillmann V, Patel L, Gill MS, Whatmore AJ, Price DA, Kibirige MS, et al. Monitoring serum insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), IGF-I/IGFBP-3 molar ratio and leptin during growth hormone treatment for disordered growth. Clin Endocrinol (Oxf). 2000;53:329–36.CrossRef Tillmann V, Patel L, Gill MS, Whatmore AJ, Price DA, Kibirige MS, et al. Monitoring serum insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), IGF-I/IGFBP-3 molar ratio and leptin during growth hormone treatment for disordered growth. Clin Endocrinol (Oxf). 2000;53:329–36.CrossRef
9.
go back to reference Scire G, Del Bianco C, Spadoni G, Cianfarani S. Growth hormone therapy does not alter the insulin-like growth factor-I/insulin-like growth factor binding protein-3 molar ratio in growth hormone-deficient children. J Endocrinol Invest. 2008;31:153–8.CrossRefPubMed Scire G, Del Bianco C, Spadoni G, Cianfarani S. Growth hormone therapy does not alter the insulin-like growth factor-I/insulin-like growth factor binding protein-3 molar ratio in growth hormone-deficient children. J Endocrinol Invest. 2008;31:153–8.CrossRefPubMed
10.
go back to reference Juul A, Bang P, Hertel NT, Main K, Dalgaard P, Jørgensen K, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab. 1994;78:744–52.PubMed Juul A, Bang P, Hertel NT, Main K, Dalgaard P, Jørgensen K, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab. 1994;78:744–52.PubMed
11.
go back to reference Albertsson-Wikland K, Rosberg S, Karlberg J, Groth T. Analysis of 24-hour growth hormone profiles in healthy boys and girls of normal stature: relation to puberty. J Clin Endocrinol Metab. 1994;78:1195–201.PubMed Albertsson-Wikland K, Rosberg S, Karlberg J, Groth T. Analysis of 24-hour growth hormone profiles in healthy boys and girls of normal stature: relation to puberty. J Clin Endocrinol Metab. 1994;78:1195–201.PubMed
12.
go back to reference Löfqvist C, Andersson E, Gelander L, Rosberg S, Blum WF, Albertsson WK. Reference values for IGF-I throughout childhood and adolescence: a model that accounts simultaneously for the effect of gender, age, and puberty. J Clin Endocrinol Metab. 2001;86:5870–6.CrossRefPubMed Löfqvist C, Andersson E, Gelander L, Rosberg S, Blum WF, Albertsson WK. Reference values for IGF-I throughout childhood and adolescence: a model that accounts simultaneously for the effect of gender, age, and puberty. J Clin Endocrinol Metab. 2001;86:5870–6.CrossRefPubMed
13.
go back to reference Veldhuis JD, Metzger DL, Martha Jr PM, Mauras N, Kerrigan JR, Keenan B, et al. Estrogen and testosterone, but Not a nonaromatizable androgen, direct network integration of the hypothalamo-somatotrope (growth hormone)-insulin-like growth factor I axis in the human: evidence from pubertal pathophysiology and Sex-steroid hormone replacement 1. J Clin Endocrinol Metab. 1997;82:3414–20.PubMed Veldhuis JD, Metzger DL, Martha Jr PM, Mauras N, Kerrigan JR, Keenan B, et al. Estrogen and testosterone, but Not a nonaromatizable androgen, direct network integration of the hypothalamo-somatotrope (growth hormone)-insulin-like growth factor I axis in the human: evidence from pubertal pathophysiology and Sex-steroid hormone replacement 1. J Clin Endocrinol Metab. 1997;82:3414–20.PubMed
14.
go back to reference Ranke MB, Lindberg A, Martin DD, Bakker B, Wilton P, Albertsson-Wikland K, et al. The mathematical model for total pubertal growth in idiopathic growth hormone (GH) deficiency suggests a moderate role of GH dose. J Clin Endocrinol Metab. 2003;88:4748–53.CrossRefPubMed Ranke MB, Lindberg A, Martin DD, Bakker B, Wilton P, Albertsson-Wikland K, et al. The mathematical model for total pubertal growth in idiopathic growth hormone (GH) deficiency suggests a moderate role of GH dose. J Clin Endocrinol Metab. 2003;88:4748–53.CrossRefPubMed
15.
go back to reference Mauras N, Attie KM, Reiter EO, Saenger P, Baptista J. High dose recombinant human growth hormone (GH) treatment of GH-deficient patients in puberty increases near-final height: a randomized, multicenter trial. Genentech, Inc., Cooperative Study Group. J Clin Endocrinol Metab. 2000;85:3653–60.PubMed Mauras N, Attie KM, Reiter EO, Saenger P, Baptista J. High dose recombinant human growth hormone (GH) treatment of GH-deficient patients in puberty increases near-final height: a randomized, multicenter trial. Genentech, Inc., Cooperative Study Group. J Clin Endocrinol Metab. 2000;85:3653–60.PubMed
16.
go back to reference Sas TC, de Ridder MA, Wit JM, Rotteveel J, Oostdijk W, Reeser HM, et al. Adult height in children with growth hormone deficiency: a randomized, controlled, growth hormone dose–response trial. Horm Res Paediatr. 2010;74:172–81.CrossRefPubMed Sas TC, de Ridder MA, Wit JM, Rotteveel J, Oostdijk W, Reeser HM, et al. Adult height in children with growth hormone deficiency: a randomized, controlled, growth hormone dose–response trial. Horm Res Paediatr. 2010;74:172–81.CrossRefPubMed
17.
go back to reference Kriström B, Lundberg E, Jonsson B. IGF-I and growth response to adult height in a randomized GH-treatment trial in short non-GH-deficient children. J Clin Endocrinol Metab. 2014;99:2917–24.CrossRefPubMed Kriström B, Lundberg E, Jonsson B. IGF-I and growth response to adult height in a randomized GH-treatment trial in short non-GH-deficient children. J Clin Endocrinol Metab. 2014;99:2917–24.CrossRefPubMed
18.
go back to reference Albertsson-Wikland K, Alm F, Aronsson S, Gustafsson J, Hagenas L, Hager A, et al. Effect of growth hormone (GH) during puberty in GH-deficient children: preliminary results from an ongoing randomized trial with different dose regimens. Acta Paediatr Suppl. 1999;88:80–4.CrossRefPubMed Albertsson-Wikland K, Alm F, Aronsson S, Gustafsson J, Hagenas L, Hager A, et al. Effect of growth hormone (GH) during puberty in GH-deficient children: preliminary results from an ongoing randomized trial with different dose regimens. Acta Paediatr Suppl. 1999;88:80–4.CrossRefPubMed
19.
go back to reference Albertsson-Wikland K, Kriström B, Lundberg E, Aronson A, Gustafsson J, Hagenäs L, et al. Growth hormone dose-dependent pubertal growth: a randomized trial in short children with Low growth hormone secretion. Horm Res Paediatr. 2014;82:158–70.CrossRefPubMed Albertsson-Wikland K, Kriström B, Lundberg E, Aronson A, Gustafsson J, Hagenäs L, et al. Growth hormone dose-dependent pubertal growth: a randomized trial in short children with Low growth hormone secretion. Horm Res Paediatr. 2014;82:158–70.CrossRefPubMed
20.
go back to reference Jansson C, Boguszewski C, Rosberg S, Carlsson L, Albertsson-Wikland K. Growth hormone (GH) assays: influence of standard preparations, GH isoforms, assay characteristics, and GH-binding protein. Clin Chem. 1997;43:950–6.PubMed Jansson C, Boguszewski C, Rosberg S, Carlsson L, Albertsson-Wikland K. Growth hormone (GH) assays: influence of standard preparations, GH isoforms, assay characteristics, and GH-binding protein. Clin Chem. 1997;43:950–6.PubMed
21.
go back to reference Albertsson-Wikland K, Rosberg S. Methods of Evaluating Spontaneous Growth Hormone Secretion. In: Ranke M, editor. Functional Endocrinologic Diagnostics in Children and Adolescents. Mannheim: J & J Verlag; 2010. p. 129–59. Albertsson-Wikland K, Rosberg S. Methods of Evaluating Spontaneous Growth Hormone Secretion. In: Ranke M, editor. Functional Endocrinologic Diagnostics in Children and Adolescents. Mannheim: J & J Verlag; 2010. p. 129–59.
22.
go back to reference Löfqvist C, Andersson E, Gelander L, Rosberg S, Hulthen L, Blum WF, et al. Reference values for insulin-like growth factor-binding protein-3 (IGFBP-3) and the ratio of insulin-like growth factor-I to IGFBP-3 throughout childhood and adolescence. J Clin Endocrinol Metab. 2005;90:1420–7. doi:10.1210/jc.2004-0812.CrossRefPubMed Löfqvist C, Andersson E, Gelander L, Rosberg S, Hulthen L, Blum WF, et al. Reference values for insulin-like growth factor-binding protein-3 (IGFBP-3) and the ratio of insulin-like growth factor-I to IGFBP-3 throughout childhood and adolescence. J Clin Endocrinol Metab. 2005;90:1420–7. doi:10.​1210/​jc.​2004-0812.CrossRefPubMed
23.
go back to reference Albertsson-Wikland K, Luo ZC, Niklasson A, Karlberg J. Swedish population-based longitudinal reference values from birth to 18 years of age for height, weight and head circumference. Acta Paediatr. 2002;91:739–54.CrossRef Albertsson-Wikland K, Luo ZC, Niklasson A, Karlberg J. Swedish population-based longitudinal reference values from birth to 18 years of age for height, weight and head circumference. Acta Paediatr. 2002;91:739–54.CrossRef
24.
go back to reference Karlberg J. On the construction of the infancy-childhood-puberty growth standard. Acta Paediatr Scand Suppl. 1989;356:26–37.CrossRefPubMed Karlberg J. On the construction of the infancy-childhood-puberty growth standard. Acta Paediatr Scand Suppl. 1989;356:26–37.CrossRefPubMed
25.
go back to reference Hochberg Z, Albertsson-Wikland K. Evo-devo of infantile and childhood growth. Pediatr Res. 2008;64:2–7.CrossRefPubMed Hochberg Z, Albertsson-Wikland K. Evo-devo of infantile and childhood growth. Pediatr Res. 2008;64:2–7.CrossRefPubMed
26.
go back to reference Karlberg P, Taranger J, Engstrom I, Karlberg J, Landstrom T, Lichtenstein H et al. I. physical growth from birth to 16 years and longitudinal outcome of the study during the same age period. Acta Paediatr Scand Suppl. 1976;258:7–76. Karlberg P, Taranger J, Engstrom I, Karlberg J, Landstrom T, Lichtenstein H et al. I. physical growth from birth to 16 years and longitudinal outcome of the study during the same age period. Acta Paediatr Scand Suppl. 1976;258:7–76.
27.
go back to reference Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977–1981). Acta Paediatr Scand. 1991;80:756–62.CrossRefPubMed Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977–1981). Acta Paediatr Scand. 1991;80:756–62.CrossRefPubMed
28.
go back to reference Cohen P, Rogol AD, Howard CP, Bright GM, Kappelgaard AM, Rosenfeld RG, et al. Insulin growth factor-based dosing of growth hormone therapy in children: a randomized, controlled study. J Clin Endocrinol Metab. 2007;92:2480–6.CrossRefPubMed Cohen P, Rogol AD, Howard CP, Bright GM, Kappelgaard AM, Rosenfeld RG, et al. Insulin growth factor-based dosing of growth hormone therapy in children: a randomized, controlled study. J Clin Endocrinol Metab. 2007;92:2480–6.CrossRefPubMed
29.
go back to reference Ranke MB, Lindberg A, Chatelain P, Wilton P, Cutfield W, Albertsson-Wikland K, et al. Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. J Clin Endocrinol Metab. 1999;84:1174–83.CrossRefPubMed Ranke MB, Lindberg A, Chatelain P, Wilton P, Cutfield W, Albertsson-Wikland K, et al. Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. J Clin Endocrinol Metab. 1999;84:1174–83.CrossRefPubMed
30.
go back to reference Albertsson-Wikland K, Kristrom B, Rosberg S, Svensson B, Nierop AF. Validated multivariate models predicting the growth response to GH treatment in individual short children with a broad range in GH secretion capacities. Pediatr Res. 2000;48:475–84.CrossRef Albertsson-Wikland K, Kristrom B, Rosberg S, Svensson B, Nierop AF. Validated multivariate models predicting the growth response to GH treatment in individual short children with a broad range in GH secretion capacities. Pediatr Res. 2000;48:475–84.CrossRef
31.
go back to reference Kristrom B, Albertsson-Wikland K. Insulin and IGF-I levels during 2 yrs of treatment with individual GH doses (17–100 mu g/kg/d) do not differ to standard dose (43 mu g/kg/d) in prepubertal GHD and ISS children. Hormone Research. Allschwillestrasse 10, CH-4009 Basel, Switsseland: KARGER; 2009. Kristrom B, Albertsson-Wikland K. Insulin and IGF-I levels during 2 yrs of treatment with individual GH doses (17–100 mu g/kg/d) do not differ to standard dose (43 mu g/kg/d) in prepubertal GHD and ISS children. Hormone Research. Allschwillestrasse 10, CH-4009 Basel, Switsseland: KARGER; 2009.
32.
go back to reference Isaksson O, Jansson J-O, Gause I. Growth hormone stimulates longitudinal bone growth directly. Science. 1982;216:1237–9.CrossRefPubMed Isaksson O, Jansson J-O, Gause I. Growth hormone stimulates longitudinal bone growth directly. Science. 1982;216:1237–9.CrossRefPubMed
33.
go back to reference Green H, Morikawa M, Mxon T. A dual effector theory of growth‐hormone action. Differentiation. 1985;29:195–8.CrossRefPubMed Green H, Morikawa M, Mxon T. A dual effector theory of growth‐hormone action. Differentiation. 1985;29:195–8.CrossRefPubMed
34.
go back to reference Decker R, Nygren A, Kristrom B, Nierop AF, Gustafsson J, Albertsson-Wikland K, et al. Different thresholds of tissue-specific dose-responses to growth hormone in short prepubertal children. BMC Endocr Disord. 2012;12:26.CrossRefPubMedPubMedCentral Decker R, Nygren A, Kristrom B, Nierop AF, Gustafsson J, Albertsson-Wikland K, et al. Different thresholds of tissue-specific dose-responses to growth hormone in short prepubertal children. BMC Endocr Disord. 2012;12:26.CrossRefPubMedPubMedCentral
35.
go back to reference Ranke MB, Lindberg A. Predicting growth in response to growth hormone treatment. Growth Horm IGF Res. 2009;19:1–11.CrossRefPubMed Ranke MB, Lindberg A. Predicting growth in response to growth hormone treatment. Growth Horm IGF Res. 2009;19:1–11.CrossRefPubMed
36.
go back to reference Ranke M, Schweizer R, Elmlinger M, Weber K, Binder G, Schwarze C, et al. Relevance of IGF-I, IGFBP-3, and IGFBP-2 measurements during GH treatment of GH-deficient and non-GH-deficient children and adolescents. Horm Res Paediatr. 2001;55:115–24.CrossRef Ranke M, Schweizer R, Elmlinger M, Weber K, Binder G, Schwarze C, et al. Relevance of IGF-I, IGFBP-3, and IGFBP-2 measurements during GH treatment of GH-deficient and non-GH-deficient children and adolescents. Horm Res Paediatr. 2001;55:115–24.CrossRef
37.
go back to reference Kriström B, Dahlgren J, Niklasson A, Nierop AF, Albertsson-Wikland K. The first-year growth response to growth hormone treatment predicts the long-term prepubertal growth response in children. BMC Med Inform Decis Mak. 2009;9:1.CrossRefPubMedPubMedCentral Kriström B, Dahlgren J, Niklasson A, Nierop AF, Albertsson-Wikland K. The first-year growth response to growth hormone treatment predicts the long-term prepubertal growth response in children. BMC Med Inform Decis Mak. 2009;9:1.CrossRefPubMedPubMedCentral
38.
go back to reference Buckway CK, Selva KA, Pratt KL, Tjoeng E, Guevara-Aguirre J, Rosenfeld RG. Insulin-like growth factor binding protein-3 generation as a measure of GH sensitivity. J Clin Endocrinol Metab. 2002;87:4754–65.CrossRefPubMed Buckway CK, Selva KA, Pratt KL, Tjoeng E, Guevara-Aguirre J, Rosenfeld RG. Insulin-like growth factor binding protein-3 generation as a measure of GH sensitivity. J Clin Endocrinol Metab. 2002;87:4754–65.CrossRefPubMed
39.
go back to reference Juul A, Main K, Blum WF, Lindholm J, Ranke MB, Skakkebaek NE. The ratio between serum levels of insulin-like growth factor (IGF)-I and the IGF binding proteins (IGFBP-1, 2 and 3) decreases with age in healthy adults and is increased in acromegalic patients. Clin Endocrinol (Oxf). 1994;41:85–93.CrossRef Juul A, Main K, Blum WF, Lindholm J, Ranke MB, Skakkebaek NE. The ratio between serum levels of insulin-like growth factor (IGF)-I and the IGF binding proteins (IGFBP-1, 2 and 3) decreases with age in healthy adults and is increased in acromegalic patients. Clin Endocrinol (Oxf). 1994;41:85–93.CrossRef
40.
go back to reference Chen J-W, Højlund K, Beck-Nielsen H, Sandahl Christiansen J, Ørskov H, Frystyk J. Free rather than total circulating insulin-like growth factor-I determines the feedback on growth hormone release in normal subjects. J Clin Endocrinol Metab. 2005;90:366–71.CrossRefPubMed Chen J-W, Højlund K, Beck-Nielsen H, Sandahl Christiansen J, Ørskov H, Frystyk J. Free rather than total circulating insulin-like growth factor-I determines the feedback on growth hormone release in normal subjects. J Clin Endocrinol Metab. 2005;90:366–71.CrossRefPubMed
41.
go back to reference Mandel SH, Moreland E, Rosenfeld RG, Gargosky SE. The effect of GH therapy on the immunoreactive forms and distribution of IGFBP-3, IGF-I, the acid-labile subunit, and growth rate in GH-deficient children. Endocrine. 1997;7:351–60.CrossRefPubMed Mandel SH, Moreland E, Rosenfeld RG, Gargosky SE. The effect of GH therapy on the immunoreactive forms and distribution of IGFBP-3, IGF-I, the acid-labile subunit, and growth rate in GH-deficient children. Endocrine. 1997;7:351–60.CrossRefPubMed
42.
go back to reference Coelho R, Brook CG, Preece MA, Stanhope RG, Dattani MT, Hindmarsh PC. A randomised study of two doses of biosynthetic human growth hormone on final height of pubertal children with growth hormone deficiency. Horm Res. 2008;70:85–8.CrossRefPubMed Coelho R, Brook CG, Preece MA, Stanhope RG, Dattani MT, Hindmarsh PC. A randomised study of two doses of biosynthetic human growth hormone on final height of pubertal children with growth hormone deficiency. Horm Res. 2008;70:85–8.CrossRefPubMed
43.
go back to reference Riddick L, Alter C, Davis DA, Frane J, Lippe B, Bakker B. A stepwise increase in recombinant human growth hormone dosing during puberty achieves improved pubertal growth: a National Cooperative Growth Study report. J Pediatr Endocrinol Metab. 2009;22:623–8.CrossRefPubMed Riddick L, Alter C, Davis DA, Frane J, Lippe B, Bakker B. A stepwise increase in recombinant human growth hormone dosing during puberty achieves improved pubertal growth: a National Cooperative Growth Study report. J Pediatr Endocrinol Metab. 2009;22:623–8.CrossRefPubMed
44.
go back to reference Popovic V, Mattsson AF, Gaillard RC, Wilton P, Koltowska-Häggström M, Ranke MB. Serum insulin-like growth factor I (IGF-I), IGF-binding proteins 2 and 3, and the risk for development of malignancies in adults with growth hormone (GH) deficiency treated with GH: data from KIMS (Pfizer International Metabolic Database). J Clin Endocrinol Metab. 2010;95:4449–54.CrossRefPubMed Popovic V, Mattsson AF, Gaillard RC, Wilton P, Koltowska-Häggström M, Ranke MB. Serum insulin-like growth factor I (IGF-I), IGF-binding proteins 2 and 3, and the risk for development of malignancies in adults with growth hormone (GH) deficiency treated with GH: data from KIMS (Pfizer International Metabolic Database). J Clin Endocrinol Metab. 2010;95:4449–54.CrossRefPubMed
45.
go back to reference Frystyk J, Skjærbæk C, Dinesen B, Ørskov H. Free insulin-like growth factors (IGF-I and IGF-II) in human serum. FEBS Lett. 1994;348:185–91.CrossRefPubMed Frystyk J, Skjærbæk C, Dinesen B, Ørskov H. Free insulin-like growth factors (IGF-I and IGF-II) in human serum. FEBS Lett. 1994;348:185–91.CrossRefPubMed
46.
go back to reference Skjaerbaek C, Vahl N, Frystyk J, Hansen T, Jorgensen J, Hagen C, et al. Serum free insulin-like growth factor-I in growth hormone-deficient adults before and after growth hormone replacement. Eur J Endocrinol. 1997;137:132–7.CrossRefPubMed Skjaerbaek C, Vahl N, Frystyk J, Hansen T, Jorgensen J, Hagen C, et al. Serum free insulin-like growth factor-I in growth hormone-deficient adults before and after growth hormone replacement. Eur J Endocrinol. 1997;137:132–7.CrossRefPubMed
47.
go back to reference Gelander L, Blum WF, Larsson L, Rosberg S, Albertsson-Wikland K. Monthly measurements of insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in healthy prepubertal children: characterization and relationship with growth: the 1-year growth study. Pediatr Res. 1999;45:377–83.CrossRefPubMed Gelander L, Blum WF, Larsson L, Rosberg S, Albertsson-Wikland K. Monthly measurements of insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in healthy prepubertal children: characterization and relationship with growth: the 1-year growth study. Pediatr Res. 1999;45:377–83.CrossRefPubMed
48.
go back to reference Haverkamp F, Johansson L, Dumas H, Langham S, Tauber M, Veimo D, et al. Observations of nonadherence to recombinant human growth hormone therapy in clinical practice. Clin Ther. 2008;30:307–16.CrossRefPubMed Haverkamp F, Johansson L, Dumas H, Langham S, Tauber M, Veimo D, et al. Observations of nonadherence to recombinant human growth hormone therapy in clinical practice. Clin Ther. 2008;30:307–16.CrossRefPubMed
49.
go back to reference Ba C, Kj T. Noncompliance in adolescents: A review. J Dev Behav Pediatr. 1989;10:207–15. Ba C, Kj T. Noncompliance in adolescents: A review. J Dev Behav Pediatr. 1989;10:207–15.
50.
go back to reference Westphal O, Lindberg A, Board SKN. Final height in Swedish children with idiopathic growth hormone deficiency enrolled in KIGS treated optimally with growth hormone. Acta Paediatr. 2008;97:1698–706.CrossRefPubMed Westphal O, Lindberg A, Board SKN. Final height in Swedish children with idiopathic growth hormone deficiency enrolled in KIGS treated optimally with growth hormone. Acta Paediatr. 2008;97:1698–706.CrossRefPubMed
51.
go back to reference Cianfarani S. Is high-dose growth hormone treatment during puberty worthwhile? Horm Res Paediatr. 2014;82:143.CrossRefPubMed Cianfarani S. Is high-dose growth hormone treatment during puberty worthwhile? Horm Res Paediatr. 2014;82:143.CrossRefPubMed
Metadata
Title
Growth hormone (GH) dose-dependent IGF-I response relates to pubertal height gain
Authors
Elena Lundberg
Berit Kriström
Bjorn Jonsson
Kerstin Albertsson-Wikland
on behalf of the study group
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2015
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-015-0080-8

Other articles of this Issue 1/2015

BMC Endocrine Disorders 1/2015 Go to the issue