Skip to main content
Top
Published in: BMC Urology 1/2017

Open Access 01-12-2017 | Research article

A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation

Authors: Vera Y. Chung, Benjamin W. Turney

Published in: BMC Urology | Issue 1/2017

Login to get access

Abstract

Background

Urolithiasis is a significant healthcare issue but the pathophysiology of stone disease remains poorly understood. Drosophila Malpighian tubules were known to share similar physiological function to human renal tubules. We have used Drosophila as a genetic model to study the transcriptional response to stone formation secondary to dietary manipulation.

Methods

Wild-type male flies were raised on standard medium supplemented with lithogenic agents: control, sodium oxalate (NaOx) and ethylene glycol (EG). At 2 weeks, Malpighian tubules were dissected under polarized microscope to visualize crystals. The parallel group was dissected for RNA extraction and subsequent next-generation RNA sequencing.

Results

Crystal formation was visualized in 20%(±2.2) of flies on control diet, 73%(±3.6) on NaOx diet and 84%(±2.2) on EG diet. Differentially expressed genes were identified in flies fed with NaOx and EG diet comparing with the control group. Fifty-eight genes were differentially expressed (FDR <0.05, p < 0.05) in NaOx diet and 20 genes in EG diet. The molecular function of differentially expressed genes were assessed. Among these, Nervana 3, Eaat1 (Excitatory amino acid transporter 1), CG7912, CG5404, CG3036 worked as ion transmembrane transporters, which were possibly involved in stone pathogenesis.

Conclusions

We have shown that by dietary modification, stone formation can be manipulated and visualized in Drosophila Malpighian tubules. This genetic model could be potentially used to identify the candidate genes that influence stone risk hence providing more insight to the pathogenesis of human stone disease.
Literature
1.
go back to reference Turney BW, Reynard JM, Noble JG, Keoghane SR. Trends in urological stone disease. BJU Int. 2012;109(7):1082–7.CrossRefPubMed Turney BW, Reynard JM, Noble JG, Keoghane SR. Trends in urological stone disease. BJU Int. 2012;109(7):1082–7.CrossRefPubMed
3.
go back to reference Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med. 1993;328(12):833–8.CrossRefPubMed Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med. 1993;328(12):833–8.CrossRefPubMed
4.
go back to reference Resnick M, Pridgen DB, Goodman HO. Genetic predisposition to formation of calcium oxalate renal calculi. N Engl J Med. 1968;278(24):1313–8.CrossRefPubMed Resnick M, Pridgen DB, Goodman HO. Genetic predisposition to formation of calcium oxalate renal calculi. N Engl J Med. 1968;278(24):1313–8.CrossRefPubMed
5.
go back to reference Miller J, Chi T, Kapahi P, Kahn AJ, Kim MS, Hirata T, et al. Drosophila Melanogaster as an emerging translational model of human nephrolithiasis. J Urol. 2013;190(5):1648–56.CrossRefPubMed Miller J, Chi T, Kapahi P, Kahn AJ, Kim MS, Hirata T, et al. Drosophila Melanogaster as an emerging translational model of human nephrolithiasis. J Urol. 2013;190(5):1648–56.CrossRefPubMed
6.
go back to reference Chen YH, Liu HP, Chen HY, Tsai FJ, Chang CH, Lee YJ, et al. Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a drosophila model for nephrolithiasis/urolithiasis. Kidney Int. 2011;80(4):369–77.CrossRefPubMed Chen YH, Liu HP, Chen HY, Tsai FJ, Chang CH, Lee YJ, et al. Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a drosophila model for nephrolithiasis/urolithiasis. Kidney Int. 2011;80(4):369–77.CrossRefPubMed
8.
go back to reference Hirata T, Cabrero P, Berkholz DS, Bondeson DP, Ritman EL, Thompson JR, et al. In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol. 2012;303(11):F1555–62.CrossRefPubMedPubMedCentral Hirata T, Cabrero P, Berkholz DS, Bondeson DP, Ritman EL, Thompson JR, et al. In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol. 2012;303(11):F1555–62.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Beyenbach KW. Transport mechanisms of diuresis in Malpighian tubules of insects. J Exp Biol. 2003;206(Pt 21):3845–56.CrossRefPubMed Beyenbach KW. Transport mechanisms of diuresis in Malpighian tubules of insects. J Exp Biol. 2003;206(Pt 21):3845–56.CrossRefPubMed
11.
go back to reference Wessing A, Zierold K. The formation of type-I concretions in drosophila Malpighian tubules studied by electron microscopy and X-ray microanalysis. J Insect Physiol. 1999;45(1):39–44.CrossRefPubMed Wessing A, Zierold K. The formation of type-I concretions in drosophila Malpighian tubules studied by electron microscopy and X-ray microanalysis. J Insect Physiol. 1999;45(1):39–44.CrossRefPubMed
12.
13.
go back to reference Sun B, Wang W, Salvaterra PM. Functional analysis and tissue-specific expression of Drosophila Na+,K+−ATPase subunits. J Neurochem. 1998;71(1):142–51.CrossRefPubMed Sun B, Wang W, Salvaterra PM. Functional analysis and tissue-specific expression of Drosophila Na+,K+−ATPase subunits. J Neurochem. 1998;71(1):142–51.CrossRefPubMed
14.
go back to reference Friedman PA. Codependence of renal calcium and sodium transport. Annu Rev Physiol. 1998;60:179–97.CrossRefPubMed Friedman PA. Codependence of renal calcium and sodium transport. Annu Rev Physiol. 1998;60:179–97.CrossRefPubMed
16.
go back to reference Friedman PA, Figueiredo JF, Maack T, Windhager EE. Sodium-calcium interactions in the renal proximal convoluted tubule of the rabbit. Am J Phys. 1981;240(6):F558–68. Friedman PA, Figueiredo JF, Maack T, Windhager EE. Sodium-calcium interactions in the renal proximal convoluted tubule of the rabbit. Am J Phys. 1981;240(6):F558–68.
17.
go back to reference Winkfein RJ, Pearson B, Ward R, Szerencsei RT, Colley NJ, Schnetkamp PP. Molecular characterization, functional expression and tissue distribution of a second NCKX Na+/Ca2+ −K+ exchanger from drosophila. Cell Calcium. 2004;36(2):147–55.CrossRefPubMed Winkfein RJ, Pearson B, Ward R, Szerencsei RT, Colley NJ, Schnetkamp PP. Molecular characterization, functional expression and tissue distribution of a second NCKX Na+/Ca2+ −K+ exchanger from drosophila. Cell Calcium. 2004;36(2):147–55.CrossRefPubMed
18.
go back to reference dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA, Thurmond J, et al. FlyBase: introduction of the Drosophila Melanogaster release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res. 2015;43(Database issue):D690–7.CrossRefPubMed dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA, Thurmond J, et al. FlyBase: introduction of the Drosophila Melanogaster release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res. 2015;43(Database issue):D690–7.CrossRefPubMed
19.
go back to reference Markovich D. Physiological roles of mammalian sulfate transporters NaS1 and Sat1. Arch Immunol Ther Exp. 2011;59(2):113–6.CrossRef Markovich D. Physiological roles of mammalian sulfate transporters NaS1 and Sat1. Arch Immunol Ther Exp. 2011;59(2):113–6.CrossRef
20.
go back to reference Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, et al. Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest. 2010;120(3):706–12.CrossRefPubMedPubMedCentral Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, et al. Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest. 2010;120(3):706–12.CrossRefPubMedPubMedCentral
21.
go back to reference Reizer J, Reizer A, Saier MH Jr. A functional superfamily of sodium/solute symporters. Biochim Biophys Acta. 1994;1197(2):133–66.CrossRefPubMed Reizer J, Reizer A, Saier MH Jr. A functional superfamily of sodium/solute symporters. Biochim Biophys Acta. 1994;1197(2):133–66.CrossRefPubMed
22.
go back to reference Hering-Smith KS, Mao W, Schiro FR, Coleman-Barnett J, Pajor AM, Hamm LL. Localization of the calcium-regulated citrate transport process in proximal tubule cells. Urolithiasis. 2014;42(3):209–19.CrossRefPubMedPubMedCentral Hering-Smith KS, Mao W, Schiro FR, Coleman-Barnett J, Pajor AM, Hamm LL. Localization of the calcium-regulated citrate transport process in proximal tubule cells. Urolithiasis. 2014;42(3):209–19.CrossRefPubMedPubMedCentral
23.
go back to reference He Y, Chen X, Yu Z, Wu D, Lv Y, Shi S, et al. Sodium dicarboxylate cotransporter-1 expression in renal tissues and its role in rat experimental nephrolithiasis. J Nephrol. 2004;17(1):34–42.PubMed He Y, Chen X, Yu Z, Wu D, Lv Y, Shi S, et al. Sodium dicarboxylate cotransporter-1 expression in renal tissues and its role in rat experimental nephrolithiasis. J Nephrol. 2004;17(1):34–42.PubMed
25.
go back to reference Jobby MK, Sharma Y. Calcium-binding to lens betaB2- and betaA3-crystallins suggests that all beta-crystallins are calcium-binding proteins. FEBS J. 2007;274(16):4135–47.CrossRefPubMed Jobby MK, Sharma Y. Calcium-binding to lens betaB2- and betaA3-crystallins suggests that all beta-crystallins are calcium-binding proteins. FEBS J. 2007;274(16):4135–47.CrossRefPubMed
26.
go back to reference Khan SR, Canales BK. Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall's plaques? J Urol. 2011;186(3):1107–13.CrossRefPubMedPubMedCentral Khan SR, Canales BK. Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall's plaques? J Urol. 2011;186(3):1107–13.CrossRefPubMedPubMedCentral
27.
go back to reference Tiselius HG. A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res. 2011;39(4):231–43.CrossRefPubMed Tiselius HG. A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res. 2011;39(4):231–43.CrossRefPubMed
28.
go back to reference Stechman MJ, Loh NY, Thakker RV. Genetic causes of hypercalciuric nephrolithiasis. Pediatr Nephrol. 2009;24(12):2321–32.CrossRefPubMed Stechman MJ, Loh NY, Thakker RV. Genetic causes of hypercalciuric nephrolithiasis. Pediatr Nephrol. 2009;24(12):2321–32.CrossRefPubMed
29.
go back to reference Cabrero P, Radford JC, Broderick KE, Costes L, Veenstra JA, Spana EP, et al. The Dh gene of Drosophila Melanogaster encodes a diuretic peptide that acts through cyclic AMP. J Exp Biol. 2002;205(Pt 24):3799–807.PubMed Cabrero P, Radford JC, Broderick KE, Costes L, Veenstra JA, Spana EP, et al. The Dh gene of Drosophila Melanogaster encodes a diuretic peptide that acts through cyclic AMP. J Exp Biol. 2002;205(Pt 24):3799–807.PubMed
Metadata
Title
A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation
Authors
Vera Y. Chung
Benjamin W. Turney
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2017
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-017-0292-5

Other articles of this Issue 1/2017

BMC Urology 1/2017 Go to the issue