Skip to main content
Log in

Physiological Roles of Mammalian Sulfate Transporters NaS1 and Sat1

  • REVIEW
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

This review summarizes the physiological roles of the renal sulfate transporters NaS1 (Slc13a1) and Sat1 (Slc26a1). NaS1 and Sat1 encode renal anion transporters that mediate proximal tubular sulfate reabsorption and thereby regulate blood sulfate levels. Targeted disruption of murine NaS1 and Sat1 leads to hyposulfatemia and hypersulfaturia. Sat1 null mice also exhibit hyperoxalemia, hyperoxaluria and calcium oxalate urolithiasis. Dysregulation of NaS1 and Sat1 leads to hypersulfaturia, hyposulfatemia and liver damage. Loss of Sat1 leads additionally to hyperoxaluria with hyperoxalemia, nephrocalcinosis and calcium oxalate urolithiasis. These data indicate that the renal anion transporters NaS1 and Sat1 are essential for sulfate and oxalate homeostasis, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NaS1:

Sodium sulfate cotransporter-1

Sat1:

Sulfate anion transporter-1

BBM:

Brush-border membrane

BLM:

Basolateral membrane

DIDS:

4,4′-Diisothiocyanato-2,2′-disulfonate

SITS:

4-Acetamido-4′-isothiocyanato-2,2′-disulfonate

References

  • Bastlein C, Burckhardt G (1986) Sensitivity of rat renal luminal and contraluminal sulfate transport to DIDS. Am J Physiol 250:F226–F234

    PubMed  CAS  Google Scholar 

  • Beck L, Markovich D (2000) The mouse Na(+)–sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. J Biol Chem 275:11880–11890

    Article  PubMed  CAS  Google Scholar 

  • Bissig M, Hagenbuch B, Stieger B et al (1994) Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 269:3017–3021

    PubMed  CAS  Google Scholar 

  • Brazy PC, Dennis VW (1981) Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am J Physiol 241:F300–F307

    PubMed  CAS  Google Scholar 

  • Busch AE, Waldegger S, Herzer T et al (1994) Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4(2−) transport protein NaSi-1. J Biol Chem 269:12407–12409

    PubMed  CAS  Google Scholar 

  • David C, Ullrich KJ (1992) Substrate specificity of the luminal Na+-dependent sulphate transport system in the proximal renal tubule as compared to the contraluminal sulphate exchange system. Pflugers Arch 421:455–465

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Markovich D (2002) Regulation of the mouse Nas1 promoter by vitamin D and thyroid hormone. Pflugers Arch 444:353–359

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Markovich D (2005) Pathogenetics of the human SLC26 transporters. Curr Med Chem 12:385–396

    PubMed  CAS  Google Scholar 

  • Dawson PA, Beck L, Markovich D (2003) Hyposulfatemia, growth retardation, reduced fertility and seizures in mice lacking a functional NaSi-1 gene. Proc Natl Acad Sci USA 100:13704–13709

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Steane SE, Markovich D (2004) Behavioural abnormalities of the hyposulphataemic Nas1 knock-out mouse. Behav Brain Res 154:457–463

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Steane SE, Markovich D (2005) Impaired memory and olfactory performance in NaSi-1 sulphate transporter deficient mice. Behav Brain Res 159:15–20

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Gardiner B, Grimmond S et al (2006) Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice. Physiol Genomics 26:116–124

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Gardiner B, Lee S et al (2008) Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice. J Steroid Biochem Mol Biol 112:55–62

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Huxley S, Gardiner B et al (2009) Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut 58:910–919

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Choyce A, Chuang C et al (2010a) Enhanced tumor growth in the NaS1 sulfate transporter null mouse. Cancer Sci 101:369–373

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Russell CS, Lee S et al (2010b) Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest 120:706–712

    Article  PubMed  CAS  Google Scholar 

  • Fernandes I, Hampson G, Cahours X et al (1997) Abnormal sulfate metabolism in vitamin D-deficient rats. J Clin Invest 100:196–203

    Article  Google Scholar 

  • Fernandes I, Laouari D, Tutt P et al (2001) Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats. Kidney Int 59:210–221

    Article  PubMed  CAS  Google Scholar 

  • Goudsmit A Jr, Power MH, Bollman JL (1939) The excretion of sulfates by the dog. Am J Physiol 125:506

    CAS  Google Scholar 

  • Hagenbuch B, Stange G, Murer H (1985) Transport of sulphate in rat jejunal and proximal tubular basolateral membrane vesicles. Pflugers Arch 405:202–208

    Article  PubMed  CAS  Google Scholar 

  • Hierholzer K, Cade R, Gurd R et al (1960) Stop flow analysis of renal reabsorption and excretion of sulfate in the dog. Am J Physiol 198:833–837

    PubMed  CAS  Google Scholar 

  • Karniski LP, Lotscher M, Fucentese M et al (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol 275:F79–F87

    PubMed  CAS  Google Scholar 

  • Kuo SM, Aronson PS (1988) Oxalate transport via the sulfate/HCO3 exchanger in rabbit renal basolateral membrane vesicles. J Biol Chem 263:9710–9717

    PubMed  CAS  Google Scholar 

  • Lee A, Markovich D (2004) Characterization of the human renal Na(+)–sulphate cotransporter gene (NAS1) promoter. Pflugers Arch 448:490–499

    PubMed  CAS  Google Scholar 

  • Lee A, Beck L, Markovich D (2000a) The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization. Genomics 70:354–363

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Sagawa K, Shi W et al (2000b) Hormonal regulation of sodium/sulfate co-transport in renal epithelial cells. Proc Soc Exp Biol Med 225:49–57

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Beck L, Markovich D (2003) The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation thyroid hormone. DNA Cell Biol 22:19–31

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Dawson PA, Markovich D (2005) NaSi-1 and Sat-1: structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters. Int J Biochem Cell Biol 37:1350–1356

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Dawson PA, Hewavitharana AK et al (2006) Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen-induced hepatotoxicity. Hepatology 43:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kesby JP, Muslim MD et al (2007) Hyperserotonaemia and reduced brain serotonin levels in NaS1 sulphate transporter null mice. Neuroreport 18:1981–1985

    Article  PubMed  CAS  Google Scholar 

  • Lotscher M, Custer M, Quabius ES et al (1996) Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney. Pflugers Arch 432:373–378

    Article  PubMed  CAS  Google Scholar 

  • Low I, Friedrich T, Burckhardt G (1984) Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am J Physiol 246:F334–F342

    PubMed  CAS  Google Scholar 

  • Lucke H, Stange G, Murer H (1979) Sulphate-ion/sodium-ion cotransport by brush-border membrane vesicles isolated from rat kidney cortex. Biochem J 182:223–229

    PubMed  CAS  Google Scholar 

  • Lucke H, Stange G, Murer H (1981) Sulfate–sodium cotransport by brush-border membrane vesicles isolated from rat ileum. Gastroenterology 80:22–30

    PubMed  CAS  Google Scholar 

  • Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533

    PubMed  CAS  Google Scholar 

  • Markovich D (2006) Sulfate transport by SLC26 transporters. Novartis Found Symp 273:42–51; discussion 51–58, 261–264

    Google Scholar 

  • Markovich D (2008) Expression cloning and radiotracer uptakes in Xenopus laevis oocytes. Nat Protoc 3:1975–1980

    Article  PubMed  CAS  Google Scholar 

  • Markovich D, Aronson PS (2007) Specificity and regulation of renal sulfate transporters. Annu Rev Physiol 69:361–375

    Article  PubMed  CAS  Google Scholar 

  • Markovich D, Murer H (2004) The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch 447:594–602

    Article  PubMed  CAS  Google Scholar 

  • Markovich D, Forgo J, Stange G et al (1993) Expression cloning of rat renal Na+/SO4(2−) cotransport. Proc Natl Acad Sci USA 90:8073–8077

    Article  PubMed  CAS  Google Scholar 

  • Markovich D, Bissig M, Sorribas V et al (1994) Expression of rat renal sulfate transport systems in Xenopus laevis oocytes. Functional characterization and molecular identification. J Biol Chem 269:3022–3026

    PubMed  CAS  Google Scholar 

  • Markovich D, Murer H, Biber J et al (1998) Dietary sulfate regulates the expression of the renal brush border Na/Si cotransporter NaSi-1. J Am Soc Nephrol 9:1568–1573

    PubMed  CAS  Google Scholar 

  • Markovich D, Wang H, Puttaparthi K et al (1999a) Chronic K depletion inhibits renal brush border membrane Na/sulfate cotransport. Kidney Int 55:244–251

    Article  PubMed  CAS  Google Scholar 

  • Markovich D, Werner A, Murer H (1999b) Expression cloning with Xenopus oocytes. In: Hildebrandt F, Igarashi P (eds) Techniques in molecular medicine. Springer, Heidelberg

    Google Scholar 

  • Murer H, Markovich D, Biber J (1994) Renal and small intestinal sodium-dependent symporters of phosphate and sulphate. J Exp Biol 196:167–181

    PubMed  CAS  Google Scholar 

  • Pritchard JB, Renfro JL (1983) Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc Natl Acad Sci USA 80:2603–2607

    Article  PubMed  CAS  Google Scholar 

  • Puttaparthi K, Markovich D, Halaihel N et al (1999) Metabolic acidosis regulates rat renal Na–Si cotransport activity. Am J Physiol 276:C1398–C1404

    PubMed  CAS  Google Scholar 

  • Regeer RR, Markovich D (2004) A dileucine motif targets the sulfate anion transporter sat-1 to the basolateral membrane in renal cell lines. Am J Physiol Cell Physiol 287:C365–C372

    Article  PubMed  CAS  Google Scholar 

  • Regeer RR, Lee A, Markovich D (2003) Characterization of the human sulfate anion transporter (hsat-1) protein and gene (SAT1; SLC26A1). DNA Cell Biol 22:107–117

    Article  PubMed  CAS  Google Scholar 

  • Regeer RR, Nicke A, Markovich D (2007) Quaternary structure and apical membrane sorting of the mammalian NaSi-1 sulfate transporter in renal cell lines. Int J Biochem Cell Biol 39:2240–2251

    Article  PubMed  CAS  Google Scholar 

  • Sagawa K, Benincosa LJ, Murer H et al (1998a) Ibuprofen-induced changes in sulfate renal transport. J Pharmacol Exp Ther 287:1092–1097

    PubMed  CAS  Google Scholar 

  • Sagawa K, DuBois DC, Almon RR et al (1998b) Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats. J Pharmacol Exp Ther 287:1056–1062

    PubMed  CAS  Google Scholar 

  • Sagawa K, Han B, DuBois DC et al (1999a) Age- and growth hormone-induced alterations in renal sulfate transport. J Pharmacol Exp Ther 290:1182–1187

    PubMed  CAS  Google Scholar 

  • Sagawa K, Murer H, Morris ME (1999b) Effect of experimentally induced hypothyroidism on sulfate renal transport in rats. Am J Physiol 276:F164–F171

    PubMed  CAS  Google Scholar 

  • Schneider EG, Durham JC, Sacktor B (1984) Sodium-dependent transport of inorganic sulfate by rabbit renal brush- border membrane vesicles. Effects of other ions. J Biol Chem 259:14591–14599

    PubMed  CAS  Google Scholar 

  • Turner RJ (1984) Sodium-dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am J Physiol 247:F793–F798

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Kloss S (1980) Bidirectional active transport of thiosulfate in the proximal convolution of the rat kidney. Pflugers Arch 387:127–132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Australian Research Council, the National Health and Medical Research Council of Australia and the Cancer Council Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Markovich.

About this article

Cite this article

Markovich, D. Physiological Roles of Mammalian Sulfate Transporters NaS1 and Sat1. Arch. Immunol. Ther. Exp. 59, 113–116 (2011). https://doi.org/10.1007/s00005-011-0114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-011-0114-5

Keywords

Navigation