Skip to main content
Top
Published in: Urolithiasis 3/2014

01-06-2014 | Original Paper

Localization of the calcium-regulated citrate transport process in proximal tubule cells

Authors: Kathleen S. Hering-Smith, Weibo Mao, Faith R. Schiro, Joycelynn Coleman-Barnett, Ana M. Pajor, L. Lee Hamm

Published in: Urolithiasis | Issue 3/2014

Login to get access

Abstract

Urinary citrate is an important inhibitor of calcium-stone formation. Most of the citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical >basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However, by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles.
Footnotes
1
OKP cells are a subclone of the original cell line of OK cells [14].
 
Literature
1.
go back to reference Pak CY (1987) Citrate and renal calculi. Miner Electrolyte Metab 13(4):257–266PubMed Pak CY (1987) Citrate and renal calculi. Miner Electrolyte Metab 13(4):257–266PubMed
2.
go back to reference Pajor AM, Sun N (1996) Functional differences between rabbit and human Na(+)-dicarboxylate cotransporters, NaDC-1 and hNaDC-1. Am J Physiol 271(5 Pt 2):F1093–F1099PubMed Pajor AM, Sun N (1996) Functional differences between rabbit and human Na(+)-dicarboxylate cotransporters, NaDC-1 and hNaDC-1. Am J Physiol 271(5 Pt 2):F1093–F1099PubMed
3.
go back to reference Hering-Smith KS, Gambala CT, Hamm LL (2000) Citrate and succinate transport in proximal tubule cells. Am J Physiol 278(3):F492–F498 Hering-Smith KS, Gambala CT, Hamm LL (2000) Citrate and succinate transport in proximal tubule cells. Am J Physiol 278(3):F492–F498
4.
go back to reference Hering-Smith KS, Schiro FR, Pajor AM, Hamm LL (2011) Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells. Am J Physiol Renal Physiol 300(2):F425–F432PubMedCentralPubMedCrossRef Hering-Smith KS, Schiro FR, Pajor AM, Hamm LL (2011) Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells. Am J Physiol Renal Physiol 300(2):F425–F432PubMedCentralPubMedCrossRef
5.
6.
go back to reference Law D, Hering-Smith KS, Hamm LL (1992) Citrate transport in proximal cell line. Am J Physiol 263(1 Pt 1):C220–C225PubMed Law D, Hering-Smith KS, Hamm LL (1992) Citrate transport in proximal cell line. Am J Physiol 263(1 Pt 1):C220–C225PubMed
7.
go back to reference Smith RM, Martell AE (1989) Critical stability constants. Plenum Press, New YorkCrossRef Smith RM, Martell AE (1989) Critical stability constants. Plenum Press, New YorkCrossRef
8.
go back to reference Burckhardt BC, Burckhardt G (2003) Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 146:95–158PubMedCrossRef Burckhardt BC, Burckhardt G (2003) Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 146:95–158PubMedCrossRef
9.
go back to reference Pajor AM (2000) Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol 175(1):1–8PubMedCrossRef Pajor AM (2000) Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol 175(1):1–8PubMedCrossRef
10.
go back to reference Aruga S, Pajor AM, Nakamura K, Liu L, Moe OW, Preisig PA et al (2004) OKP cells express the Na-dicarboxylate cotransporter NaDC-1. Am J Physiol Cell Physiol 287(1):C64–C72PubMedCrossRef Aruga S, Pajor AM, Nakamura K, Liu L, Moe OW, Preisig PA et al (2004) OKP cells express the Na-dicarboxylate cotransporter NaDC-1. Am J Physiol Cell Physiol 287(1):C64–C72PubMedCrossRef
11.
go back to reference Wright SH, Wunz TM (1987) Succinate and citrate transport in renal basolateral and brush-border membranes. Am J Physiol 253(3 Pt 2):F432–F439PubMed Wright SH, Wunz TM (1987) Succinate and citrate transport in renal basolateral and brush-border membranes. Am J Physiol 253(3 Pt 2):F432–F439PubMed
12.
go back to reference Jorgensen KE, Kragh-Hansen U, Roigaard-Petersen H, Sheikh MI (1983) Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex. Am J Physiol 244(6):F686–F695PubMed Jorgensen KE, Kragh-Hansen U, Roigaard-Petersen H, Sheikh MI (1983) Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex. Am J Physiol 244(6):F686–F695PubMed
13.
go back to reference Barac-Nieto M (1984) Effects of pH, calcium, and succinate on sodium citrate cotransport in renal microvilli. Am J Physiol 247(2 Pt 2):F282–F290PubMed Barac-Nieto M (1984) Effects of pH, calcium, and succinate on sodium citrate cotransport in renal microvilli. Am J Physiol 247(2 Pt 2):F282–F290PubMed
14.
go back to reference Cole JA, Forte LR, Krause WJ, Thorne PK (1989) Clonal sublines that are morphologically and functionally distinct from parental OK cells. Am J Physiol 256(4 Pt 2):F672–F679PubMed Cole JA, Forte LR, Krause WJ, Thorne PK (1989) Clonal sublines that are morphologically and functionally distinct from parental OK cells. Am J Physiol 256(4 Pt 2):F672–F679PubMed
15.
go back to reference Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y et al (1998) Cloning, functional characterization, and localization of a rat renal Na+ -dicarboxylate transporter. Am J Physiol 275(2 Pt 2):F298–F305PubMed Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y et al (1998) Cloning, functional characterization, and localization of a rat renal Na+ -dicarboxylate transporter. Am J Physiol 275(2 Pt 2):F298–F305PubMed
16.
go back to reference Chen XZ, Shayakul C, Berger UV, Tian W, Hediger MA (1998) Characterization of a rat Na+ -dicarboxylate cotransporter. J Biol Chem 273(33):20972–20981PubMedCrossRef Chen XZ, Shayakul C, Berger UV, Tian W, Hediger MA (1998) Characterization of a rat Na+ -dicarboxylate cotransporter. J Biol Chem 273(33):20972–20981PubMedCrossRef
17.
go back to reference Chen X, Tsukaguchi H, Chen XZ, Berger UV, Hediger MA (1999) Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest 103(8):1159–1168PubMedCentralPubMedCrossRef Chen X, Tsukaguchi H, Chen XZ, Berger UV, Hediger MA (1999) Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest 103(8):1159–1168PubMedCentralPubMedCrossRef
18.
go back to reference Kekuda R, Wang H, Huang W, Pajor AM, Leibach FH, Devoe LD et al (1999) Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter. J Biol Chem 274(6):3422–3429PubMedCrossRef Kekuda R, Wang H, Huang W, Pajor AM, Leibach FH, Devoe LD et al (1999) Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter. J Biol Chem 274(6):3422–3429PubMedCrossRef
19.
go back to reference Steffgen J, Tolan D, Beery E, Burckhardt G, Muller GA (1999) Demonstration of a Na(+)-dicarboxylate cotransporter in bovine adrenocortical cells. Pflugers Arch 438(6):860–864PubMedCrossRef Steffgen J, Tolan D, Beery E, Burckhardt G, Muller GA (1999) Demonstration of a Na(+)-dicarboxylate cotransporter in bovine adrenocortical cells. Pflugers Arch 438(6):860–864PubMedCrossRef
20.
go back to reference Wang H, Fei YJ, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH et al (2000) Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter. Am J Physiol Cell Physiol 278(5):C1019–C1030PubMed Wang H, Fei YJ, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH et al (2000) Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter. Am J Physiol Cell Physiol 278(5):C1019–C1030PubMed
21.
go back to reference Pajor AM, Gangula R, Yao X (2001) Cloning and functional characterization of a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain. Am J Physiol Cell Physiol 280(5):C1215–C1223PubMed Pajor AM, Gangula R, Yao X (2001) Cloning and functional characterization of a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain. Am J Physiol Cell Physiol 280(5):C1215–C1223PubMed
22.
go back to reference Anzai N, Jutabha P, Kanai Y, Endou H (2005) Integrated physiology of proximal tubular organic anion transport. Curr Opin Nephrol Hypertens 14(5):472–479PubMedCrossRef Anzai N, Jutabha P, Kanai Y, Endou H (2005) Integrated physiology of proximal tubular organic anion transport. Curr Opin Nephrol Hypertens 14(5):472–479PubMedCrossRef
23.
go back to reference Burckhardt BC, Lorenz J, Kobbe C, Burckhardt G (2005) Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions. Am J Physiol Renal Physiol 288(4):F792–F799PubMedCrossRef Burckhardt BC, Lorenz J, Kobbe C, Burckhardt G (2005) Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions. Am J Physiol Renal Physiol 288(4):F792–F799PubMedCrossRef
25.
go back to reference Ward DT, McLarnon SJ, Riccardi D (2002) Aminoglycosides increase intracellular calcium levels and ERK activity in proximal tubular OK cells expressing the extracellular calcium-sensing receptor. J Am Soc Nephrol 13(6):1481–1489PubMedCrossRef Ward DT, McLarnon SJ, Riccardi D (2002) Aminoglycosides increase intracellular calcium levels and ERK activity in proximal tubular OK cells expressing the extracellular calcium-sensing receptor. J Am Soc Nephrol 13(6):1481–1489PubMedCrossRef
26.
go back to reference Bozic M, Valdivielso JM (2012) Calcium signaling in renal tubular cells. Adv Exp Med Biol 740:933–944PubMedCrossRef Bozic M, Valdivielso JM (2012) Calcium signaling in renal tubular cells. Adv Exp Med Biol 740:933–944PubMedCrossRef
27.
go back to reference Pajor AM (1995) Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem 270(11):5779–5785PubMed Pajor AM (1995) Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem 270(11):5779–5785PubMed
Metadata
Title
Localization of the calcium-regulated citrate transport process in proximal tubule cells
Authors
Kathleen S. Hering-Smith
Weibo Mao
Faith R. Schiro
Joycelynn Coleman-Barnett
Ana M. Pajor
L. Lee Hamm
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
Urolithiasis / Issue 3/2014
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-014-0653-4

Other articles of this Issue 3/2014

Urolithiasis 3/2014 Go to the issue