Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Computed Tomography | Research article

A real 3D measurement technique for the tibial slope: differentiation between different articular surfaces and comparison to radiographic slope measurement

Authors: Armando Hoch, Lukas Jud, Tabitha Roth, Lazaros Vlachopoulos, Philipp Fürnstahl, Sandro F. Fucentese

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

The tibial slope plays an important role in knee surgery. However, standard radiographic measurement techniques have a low reproducibility and do not allow differentiation between medial and lateral articular surfaces. Despite availability of three-dimensional imaging, so far, no real 3D measurement technique was introduced and compared to radiographic measurement, which were the purposes of this study.

Methods

Computed tomography scans of 54 knees in 51 patients (41 males and 10 females) with a mean age of 46 years (range 22–67 years) were included. A novel 3D measurement technique was applied by two readers to measure the tibial slope of medial and lateral tibial plateau and rim. A statistical analysis was conducted to determine the intraclass correlation coefficient (ICC) for the new technique and compare it to a standard radiographic measurement.

Results

The mean 3D tibial slope for the medial plateau and rim was 7.4° and 7.6°, for the lateral plateau and rim 7.5° and 8.1°, respectively. The mean radiographic slope was 6.0°. Statistical analysis showed an ICC between both readers of 0.909, 0.987, 0.918, 0.893, for the 3D measurement of medial plateau, medial rim, lateral plateau and lateral rim, respectively, whereas the radiographic technique showed an ICC of 0.733.

Conclusions

The proposed novel measurement technique shows a high intraclass agreement and offers an applicable opportunity to assess the tibial slope three-dimensionally. Furthermore, the medial and lateral articular surfaces can be measured separately and one can differentiate the slope from the plateau and from the rim. As three-dimensional planning becomes successively more important, our measurement technique might deliver a useful supplement to the standard radiographic assessment in slope related knee surgery.

Level of evidence

Level III, diagnostic study.
Literature
1.
go back to reference Titze A. Variations in the slope of the proximal articular surface of the tibia. Z Orthop Ihre Grenzgeb. 1951;80(3):436–44.PubMed Titze A. Variations in the slope of the proximal articular surface of the tibia. Z Orthop Ihre Grenzgeb. 1951;80(3):436–44.PubMed
2.
go back to reference Ewald FC, Jacobs MA, Miegel RE, Walker PS, Poss R, Sledge CB. Kinematic total knee replacement. J Bone Joint Surg Am. 1984;66(7):1032–40.CrossRef Ewald FC, Jacobs MA, Miegel RE, Walker PS, Poss R, Sledge CB. Kinematic total knee replacement. J Bone Joint Surg Am. 1984;66(7):1032–40.CrossRef
3.
go back to reference Whiteside LA, Amador DD. The effect of posterior tibial slope on knee stability after Ortholoc total knee arthroplasty. J Arthroplast. 1988;3(Suppl):S51–7.CrossRef Whiteside LA, Amador DD. The effect of posterior tibial slope on knee stability after Ortholoc total knee arthroplasty. J Arthroplast. 1988;3(Suppl):S51–7.CrossRef
4.
go back to reference Matsuda S, Miura H, Nagamine R, Urabe K, Ikenoue T, Okazaki K, et al. Posterior tibial slope in the normal and varus knee. Am J Knee Surg. 1999;12(3):165–8.PubMed Matsuda S, Miura H, Nagamine R, Urabe K, Ikenoue T, Okazaki K, et al. Posterior tibial slope in the normal and varus knee. Am J Knee Surg. 1999;12(3):165–8.PubMed
5.
go back to reference Walker PS, Garg A. Range of motion in total knee arthroplasty. A computer analysis. Clin Orthop Relat Res. 1991;(262):227–35. Walker PS, Garg A. Range of motion in total knee arthroplasty. A computer analysis. Clin Orthop Relat Res. 1991;(262):227–35.
6.
go back to reference Singh G, Tan JH, Sng BY, Awiszus F, Lohmann CH, Nathan SS. Restoring the anatomical tibial slope and limb axis may maximise post-operative flexion in posterior-stabilised total knee replacements. Bone Joint J. 2013;95-B(10):1354–8.CrossRef Singh G, Tan JH, Sng BY, Awiszus F, Lohmann CH, Nathan SS. Restoring the anatomical tibial slope and limb axis may maximise post-operative flexion in posterior-stabilised total knee replacements. Bone Joint J. 2013;95-B(10):1354–8.CrossRef
7.
go back to reference Chambers AW, Wood AR, Kosmopoulos V, Sanchez HB, Wagner RA. Effect of posterior Tibial slope on flexion and anterior-posterior Tibial translation in posterior cruciate-retaining Total knee Arthroplasty. J Arthroplast. 2016;31(1):103–6.CrossRef Chambers AW, Wood AR, Kosmopoulos V, Sanchez HB, Wagner RA. Effect of posterior Tibial slope on flexion and anterior-posterior Tibial translation in posterior cruciate-retaining Total knee Arthroplasty. J Arthroplast. 2016;31(1):103–6.CrossRef
8.
go back to reference Kang KT, Kwon SK, Son J, Kwon OR, Lee JS, Koh YG. The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2018;26(10):3188–95.CrossRef Kang KT, Kwon SK, Son J, Kwon OR, Lee JS, Koh YG. The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2018;26(10):3188–95.CrossRef
9.
go back to reference Takatsu T, Itokazu M, Shimizu K, Brown TD. The function of posterior tilt of the tibial component following posterior cruciate ligament-retaining total knee arthroplasty. Bull Hosp Jt Dis. 1998;57(4):195–201.PubMed Takatsu T, Itokazu M, Shimizu K, Brown TD. The function of posterior tilt of the tibial component following posterior cruciate ligament-retaining total knee arthroplasty. Bull Hosp Jt Dis. 1998;57(4):195–201.PubMed
10.
go back to reference Suzuki T, Ryu K, Kojima K, Oikawa H, Saito S, Nagaoka M. The effect of posterior Tibial slope on joint gap and range of knee motion in Mobile-bearing Unicompartmental knee Arthroplasty. J Arthroplast. 2019. Suzuki T, Ryu K, Kojima K, Oikawa H, Saito S, Nagaoka M. The effect of posterior Tibial slope on joint gap and range of knee motion in Mobile-bearing Unicompartmental knee Arthroplasty. J Arthroplast. 2019.
11.
12.
go back to reference Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):1512–32.CrossRef Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):1512–32.CrossRef
13.
go back to reference Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54–62.CrossRef Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54–62.CrossRef
14.
go back to reference Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy. 2006;22(8):894–9.CrossRef Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy. 2006;22(8):894–9.CrossRef
15.
go back to reference Bernhardson AS, DePhillipo NN, Daney BT, Kennedy MI, Aman ZS, LaPrade RF. Posterior Tibial slope and risk of posterior cruciate ligament injury. Am J Sports Med. 2019;47(2):312–7.CrossRef Bernhardson AS, DePhillipo NN, Daney BT, Kennedy MI, Aman ZS, LaPrade RF. Posterior Tibial slope and risk of posterior cruciate ligament injury. Am J Sports Med. 2019;47(2):312–7.CrossRef
16.
go back to reference Badhe NP, Forster IW. High tibial osteotomy in knee instability: the rationale of treatment and early results. Knee Surg Sports Traumatol Arthrosc. 2002;10(1):38–43.CrossRef Badhe NP, Forster IW. High tibial osteotomy in knee instability: the rationale of treatment and early results. Knee Surg Sports Traumatol Arthrosc. 2002;10(1):38–43.CrossRef
17.
go back to reference Imhoff FB, Mehl J, Comer BJ, Obopilwe E, Cote MP, Feucht MJ, et al. Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load. Knee Surg Sports Traumatol Arthrosc. 2019;27(10):3381–9.CrossRef Imhoff FB, Mehl J, Comer BJ, Obopilwe E, Cote MP, Feucht MJ, et al. Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load. Knee Surg Sports Traumatol Arthrosc. 2019;27(10):3381–9.CrossRef
18.
go back to reference Zaffagnini S, Bonanzinga T, Grassi A, Marcheggiani Muccioli GM, Musiani C, Raggi F, et al. Combined ACL reconstruction and closing-wedge HTO for varus angulated ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):934–41.CrossRef Zaffagnini S, Bonanzinga T, Grassi A, Marcheggiani Muccioli GM, Musiani C, Raggi F, et al. Combined ACL reconstruction and closing-wedge HTO for varus angulated ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):934–41.CrossRef
19.
go back to reference Genin P, Weill G, Julliard R. The tibial slope. Proposal for a measurement method. J Radiol. 1993;74(1):27–33.PubMed Genin P, Weill G, Julliard R. The tibial slope. Proposal for a measurement method. J Radiol. 1993;74(1):27–33.PubMed
20.
go back to reference Paley D, Maar DC, Herzenberg JE. New concepts in high tibial osteotomy for medial compartment osteoarthritis. Orthop Clin North Am. 1994;25(3):483–98.PubMed Paley D, Maar DC, Herzenberg JE. New concepts in high tibial osteotomy for medial compartment osteoarthritis. Orthop Clin North Am. 1994;25(3):483–98.PubMed
21.
go back to reference Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A. Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot. 1996;82(3):195–200.PubMed Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A. Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot. 1996;82(3):195–200.PubMed
22.
go back to reference Gunes T, Sen C, Erdem M. Tibial slope and high tibial osteotomy using the circular external fixator. Knee Surg Sports Traumatol Arthrosc. 2007;15(2):192–8.CrossRef Gunes T, Sen C, Erdem M. Tibial slope and high tibial osteotomy using the circular external fixator. Knee Surg Sports Traumatol Arthrosc. 2007;15(2):192–8.CrossRef
23.
go back to reference Utzschneider S, Goettinger M, Weber P, Horng A, Glaser C, Jansson V, et al. Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1643–8.CrossRef Utzschneider S, Goettinger M, Weber P, Horng A, Glaser C, Jansson V, et al. Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1643–8.CrossRef
24.
go back to reference Faschingbauer M, Sgroi M, Juchems M, Reichel H, Kappe T. Can the tibial slope be measured on lateral knee radiographs? Knee Surg Sports Traumatol Arthrosc. 2014;22(12):3163–7.CrossRef Faschingbauer M, Sgroi M, Juchems M, Reichel H, Kappe T. Can the tibial slope be measured on lateral knee radiographs? Knee Surg Sports Traumatol Arthrosc. 2014;22(12):3163–7.CrossRef
25.
go back to reference Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP. Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res. 2009;467(8):2066–72.CrossRef Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP. Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res. 2009;467(8):2066–72.CrossRef
26.
go back to reference Haddad B, Konan S, Mannan K, Scott G. Evaluation of the posterior tibial slope on MR images in different population groups using the tibial proximal anatomical axis. Acta Orthop Belg. 2012;78(6):757–63.PubMed Haddad B, Konan S, Mannan K, Scott G. Evaluation of the posterior tibial slope on MR images in different population groups using the tibial proximal anatomical axis. Acta Orthop Belg. 2012;78(6):757–63.PubMed
27.
go back to reference Saxena V, Anari JB, Ruutiainen AT, Voleti PB, Stephenson JW, Lee GC. Tibial component considerations in bicruciate-retaining total knee arthroplasty: a 3D MRI evaluation of proximal tibial anatomy. Knee. 2016;23(4):593–9.CrossRef Saxena V, Anari JB, Ruutiainen AT, Voleti PB, Stephenson JW, Lee GC. Tibial component considerations in bicruciate-retaining total knee arthroplasty: a 3D MRI evaluation of proximal tibial anatomy. Knee. 2016;23(4):593–9.CrossRef
28.
go back to reference Zhang Y, Chen Y, Qiang M, Zhang K, Li H, Jiang Y, et al. Comparison between three-dimensional CT and conventional radiography in proximal tibia morphology. Medicine (Baltimore). 2018;97(30):e11632.CrossRef Zhang Y, Chen Y, Qiang M, Zhang K, Li H, Jiang Y, et al. Comparison between three-dimensional CT and conventional radiography in proximal tibia morphology. Medicine (Baltimore). 2018;97(30):e11632.CrossRef
29.
go back to reference Amerinatanzi A, Summers R, Ahmadi K, Goel VK, Hewett TE, Nyman E Jr. A novel 3D approach for determination of frontal and coronal plane tibial slopes from MR imaging. Knee. 2017;24(2):207–16.CrossRef Amerinatanzi A, Summers R, Ahmadi K, Goel VK, Hewett TE, Nyman E Jr. A novel 3D approach for determination of frontal and coronal plane tibial slopes from MR imaging. Knee. 2017;24(2):207–16.CrossRef
30.
go back to reference Amerinatanzi A, Summers RK, Ahmadi K, Goel VK, Hewett TE, Nyman E. Automated Measurement of Patient-Specific Tibial Slopes from MRI. Bioengineering (Basel). 2017;4(3):69. Amerinatanzi A, Summers RK, Ahmadi K, Goel VK, Hewett TE, Nyman E. Automated Measurement of Patient-Specific Tibial Slopes from MRI. Bioengineering (Basel). 2017;4(3):69.
31.
go back to reference Amirtharaj MJ, Hardy BM, Kent RN 3rd, Nawabi DH, Wickiewicz TL, Pearle AD, et al. Automated, accurate, and three-dimensional method for calculating sagittal slope of the tibial plateau. J Biomech. 2018;79:212–7.CrossRef Amirtharaj MJ, Hardy BM, Kent RN 3rd, Nawabi DH, Wickiewicz TL, Pearle AD, et al. Automated, accurate, and three-dimensional method for calculating sagittal slope of the tibial plateau. J Biomech. 2018;79:212–7.CrossRef
32.
go back to reference Ho JPY, Merican AM, Hashim MS, Abbas AA, Chan CK, Mohamad JA. Three-dimensional computed tomography analysis of the posterior Tibial slope in 100 knees. J Arthroplast. 2017;32(10):3176–83.CrossRef Ho JPY, Merican AM, Hashim MS, Abbas AA, Chan CK, Mohamad JA. Three-dimensional computed tomography analysis of the posterior Tibial slope in 100 knees. J Arthroplast. 2017;32(10):3176–83.CrossRef
33.
go back to reference Furnstahl P, Vlachopoulos L, Schweizer A, Fucentese SF, Koch PP. Complex osteotomies of Tibial plateau Malunions using computer-assisted planning and patient-specific surgical guides. J Orthop Trauma. 2015;29(8):e270–6.CrossRef Furnstahl P, Vlachopoulos L, Schweizer A, Fucentese SF, Koch PP. Complex osteotomies of Tibial plateau Malunions using computer-assisted planning and patient-specific surgical guides. J Orthop Trauma. 2015;29(8):e270–6.CrossRef
34.
go back to reference Jentzsch T, Vlachopoulos L, Furnstahl P, Muller DA, Fuchs B. Tumor resection at the pelvis using three-dimensional planning and patient-specific instruments: a case series. World J Surg Oncol. 2016;14(1):249.CrossRef Jentzsch T, Vlachopoulos L, Furnstahl P, Muller DA, Fuchs B. Tumor resection at the pelvis using three-dimensional planning and patient-specific instruments: a case series. World J Surg Oncol. 2016;14(1):249.CrossRef
35.
go back to reference Vlachopoulos L, Schweizer A, Meyer DC, Gerber C, Furnstahl P. Three-dimensional corrective osteotomies of complex malunited humeral fractures using patient-specific guides. J Shoulder Elb Surg. 2016;25(12):2040–7.CrossRef Vlachopoulos L, Schweizer A, Meyer DC, Gerber C, Furnstahl P. Three-dimensional corrective osteotomies of complex malunited humeral fractures using patient-specific guides. J Shoulder Elb Surg. 2016;25(12):2040–7.CrossRef
36.
go back to reference Schneider P, Eberly DH. Geometric tools for computer graphics. San Francisco: Elsevier science; 2002. Schneider P, Eberly DH. Geometric tools for computer graphics. San Francisco: Elsevier science; 2002.
37.
go back to reference Jud L, Roth T, Fürnstahl P, Vlachopoulos L, Sutter R, Fucentese SF. The impact of limb loading and the measurement modality (2D versus 3D) on the measurement of the limb loading dependent lower extremity parameters. BMC Musculoskelet Disord. 2020;21(1):418.CrossRef Jud L, Roth T, Fürnstahl P, Vlachopoulos L, Sutter R, Fucentese SF. The impact of limb loading and the measurement modality (2D versus 3D) on the measurement of the limb loading dependent lower extremity parameters. BMC Musculoskelet Disord. 2020;21(1):418.CrossRef
38.
go back to reference Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRef Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRef
39.
go back to reference Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy. 2007;23(8):852–61.CrossRef Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy. 2007;23(8):852–61.CrossRef
40.
go back to reference Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51(6):871–9.CrossRef Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51(6):871–9.CrossRef
41.
go back to reference Ihn JC, Kim SJ, Park IH. In vitro study of contact area and pressure distribution in the human knee after partial and total meniscectomy. Int Orthop. 1993;17(4):214–8.CrossRef Ihn JC, Kim SJ, Park IH. In vitro study of contact area and pressure distribution in the human knee after partial and total meniscectomy. Int Orthop. 1993;17(4):214–8.CrossRef
42.
go back to reference Alagic Z, Bujila R, Enocson A, Srivastava S, Koskinen SK. Ultra-low-dose CT for extremities in an acute setting: initial experience with 203 subjects. Skelet Radiol. 2020;49(4):531–9.CrossRef Alagic Z, Bujila R, Enocson A, Srivastava S, Koskinen SK. Ultra-low-dose CT for extremities in an acute setting: initial experience with 203 subjects. Skelet Radiol. 2020;49(4):531–9.CrossRef
43.
go back to reference Jud L, Singh S, Tondelli T, Fürnstahl P, Fucentese SF, Vlachopoulos L. Combined correction of Tibial torsion and Tibial tuberosity–trochlear groove distance by Supratuberositary torsional osteotomy of the tibia. Am J Sports Med. 2020;48(9):2260–7.CrossRef Jud L, Singh S, Tondelli T, Fürnstahl P, Fucentese SF, Vlachopoulos L. Combined correction of Tibial torsion and Tibial tuberosity–trochlear groove distance by Supratuberositary torsional osteotomy of the tibia. Am J Sports Med. 2020;48(9):2260–7.CrossRef
Metadata
Title
A real 3D measurement technique for the tibial slope: differentiation between different articular surfaces and comparison to radiographic slope measurement
Authors
Armando Hoch
Lukas Jud
Tabitha Roth
Lazaros Vlachopoulos
Philipp Fürnstahl
Sandro F. Fucentese
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03657-9

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue