Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

01-12-2020 | Scoliosis | Research article

CHD7 gene polymorphisms in female patients with idiopathic scoliosis

Authors: Karolina Borysiak, Piotr Janusz, Mirosław Andrusiewicz, Małgorzata Chmielewska, Mateusz Kozinoga, Tomasz Kotwicki, Małgorzata Kotwicka

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

The CHD7 (chromosome domain helicase DNA binding protein 7) gene has been associated with familial idiopathic scoliosis (IS) in families of European descent. The CHD7 single-nucleotide polymorphisms have never been studied in Polish Caucasian IS patients.

Methods

The aim of this study was to investigate the relationship of CHD7 gene polymorphisms with susceptibility to or progression of IS in Polish Caucasian females. The study group comprised 211 females who underwent clinical, radiological and genetic examination. The study group was analyzed in three subgroups according to: (1) Cobb angle (Cobb angle ≤30° vs. Cobb angle 35°), (2) age of diagnosis (adolescent IS vs. early-onset IS) and (3) rate of progression (non-progressive vs. slowly progressive vs. rapidly progressive IS). The control group comprised 83 females with no scoliosis and with a negative family history who underwent clinical and genetic examination. In total six CHD7 gene polymorphisms were examined. Three polymorphisms (rs1017861, rs13248429, and rs4738813) were examined by RFLP (restriction fragment length polymorphism) analysis, and three were quantified by Sanger sequencing (rs78874766, rs4738824, and rs74797613).

Results

In rs13248429, rs78874766, and rs74797613 polymorphisms only the wild allele was present. The rs1017861 polymorphism demonstrated an association with IS susceptibility (p < 0.01). Two polymorphisms, rs1017861 and rs4738813, were associated with curve severity and progression rate (p < 0.05). None of the evaluated polymorphisms in CHD7 gene showed any association with the age of IS onset.

Conclusions

The polymorphism rs1017861 in CHD7 gene showed an association with IS susceptibility. Two polymorphisms (rs1017861 and rs4738813) were associated with curve severity and progression rate. None of the evaluated polymorphisms in CHD7 gene showed any association with the age of IS onset. Further evaluation of CHD7 gene should be considered as IS modifying factor.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527–37.CrossRef Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527–37.CrossRef
3.
go back to reference Kesling KL, Reinker KA. Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976). 1997;22:2009–15.CrossRef Kesling KL, Reinker KA. Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976). 1997;22:2009–15.CrossRef
4.
go back to reference Meng Y, Lin T, Liang S, Gao R, Jiang H, Shao W, et al. Value of DNA methylation in predicting curve progression in patients with adolescent idiopathic scoliosis. EBioMedicine. 2018;36:489–96.CrossRef Meng Y, Lin T, Liang S, Gao R, Jiang H, Shao W, et al. Value of DNA methylation in predicting curve progression in patients with adolescent idiopathic scoliosis. EBioMedicine. 2018;36:489–96.CrossRef
5.
go back to reference Hermus JPS, van Rhijn LW, van Ooij A. Non-genetic expression of adolescent idiopathic scoliosis: a case report and review of the literature. Eur Spine J. 2007;16(Suppl 3):338–41.CrossRef Hermus JPS, van Rhijn LW, van Ooij A. Non-genetic expression of adolescent idiopathic scoliosis: a case report and review of the literature. Eur Spine J. 2007;16(Suppl 3):338–41.CrossRef
6.
go back to reference Simony A, Carreon LY, Hjmark K, Kyvik KO, Andersen MØ. Concordance Rates of Adolescent Idiopathic Scoliosis in a Danish Twin Population. Spine (Phila Pa 1976). 2016;41:1503–7.CrossRef Simony A, Carreon LY, Hjmark K, Kyvik KO, Andersen MØ. Concordance Rates of Adolescent Idiopathic Scoliosis in a Danish Twin Population. Spine (Phila Pa 1976). 2016;41:1503–7.CrossRef
7.
go back to reference Grauers A, Einarsdottir E, Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord. 2016;11:45.CrossRef Grauers A, Einarsdottir E, Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord. 2016;11:45.CrossRef
8.
go back to reference Gorman KF, Julien C, Moreau A. The genetic epidemiology of idiopathic scoliosis. Eur Spine J. 2012;21:1905–19.CrossRef Gorman KF, Julien C, Moreau A. The genetic epidemiology of idiopathic scoliosis. Eur Spine J. 2012;21:1905–19.CrossRef
9.
go back to reference Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, et al. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet. 2007;80:957–65.CrossRef Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, et al. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet. 2007;80:957–65.CrossRef
10.
go back to reference Hall JA, Georgel PT. CHD proteins: a diverse family with strong ties. Biochem Cell Biol. 2007;85:463–76.CrossRef Hall JA, Georgel PT. CHD proteins: a diverse family with strong ties. Biochem Cell Biol. 2007;85:463–76.CrossRef
11.
go back to reference Zentner GE, Hurd EA, Schnetz MP, Handoko L, Wang C, Wang Z, et al. CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Hum Mol Genet. 2010;19:3491–501.CrossRef Zentner GE, Hurd EA, Schnetz MP, Handoko L, Wang C, Wang Z, et al. CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Hum Mol Genet. 2010;19:3491–501.CrossRef
12.
go back to reference Janssen N, Bergman JEH, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, et al. Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat. 2012;33:1149–60.CrossRef Janssen N, Bergman JEH, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, et al. Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat. 2012;33:1149–60.CrossRef
13.
go back to reference Doyle C, Blake K. Scoliosis in CHARGE: a prospective survey and two case reports. Am J Med Genet A. 2005;133A:340–3.CrossRef Doyle C, Blake K. Scoliosis in CHARGE: a prospective survey and two case reports. Am J Med Genet A. 2005;133A:340–3.CrossRef
14.
go back to reference Tilley MK, Justice CM, Swindle K, Marosy B, Wilson AF, Miller NH. CHD7 Gene Polymorphisms and Familial Idiopathic Scoliosis. Spine (Phila Pa 1976). 2013;38:E1432–6.CrossRef Tilley MK, Justice CM, Swindle K, Marosy B, Wilson AF, Miller NH. CHD7 Gene Polymorphisms and Familial Idiopathic Scoliosis. Spine (Phila Pa 1976). 2013;38:E1432–6.CrossRef
15.
go back to reference Paria N, Wise CA. Genetics of adolescent idiopathic scoliosis. Semin Spine Surg. 2015;27:9–15.CrossRef Paria N, Wise CA. Genetics of adolescent idiopathic scoliosis. Semin Spine Surg. 2015;27:9–15.CrossRef
16.
go back to reference Janusz P, Kotwicki T, Andrusiewicz M, Kotwicka M. XbaI and PvuII polymorphisms of estrogen receptor 1 gene in females with idiopathic scoliosis: no association with occurrence or clinical form. PLoS One. 2013;8:e76806.CrossRef Janusz P, Kotwicki T, Andrusiewicz M, Kotwicka M. XbaI and PvuII polymorphisms of estrogen receptor 1 gene in females with idiopathic scoliosis: no association with occurrence or clinical form. PLoS One. 2013;8:e76806.CrossRef
17.
go back to reference Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.CrossRef Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.CrossRef
18.
go back to reference Kaplan J, Hudgins L. Neonatal presentations of CHARGE syndrome and VATER/VACTERL association. Neoreviews. 2008;9:e299–304.CrossRef Kaplan J, Hudgins L. Neonatal presentations of CHARGE syndrome and VATER/VACTERL association. Neoreviews. 2008;9:e299–304.CrossRef
19.
go back to reference Zavatsky JM, Peters AJ, Nahvi FA, Bharucha NJ, Trobisch PD, Kean KE, et al. Disease severity and treatment in adolescent idiopathic scoliosis: the impact of race and economic status. Spine J. 2015;15:939–43.CrossRef Zavatsky JM, Peters AJ, Nahvi FA, Bharucha NJ, Trobisch PD, Kean KE, et al. Disease severity and treatment in adolescent idiopathic scoliosis: the impact of race and economic status. Spine J. 2015;15:939–43.CrossRef
20.
go back to reference Korbel K, Kozinoga M, Stoliński Ł, Kotwicki T. Scoliosis Research Society (SRS) criteria and Society of Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT) 2008 guidelines in non-operative treatment of idiopathic scoliosis. Polish Orthop Traumatol. 2014;79:118–22. Korbel K, Kozinoga M, Stoliński Ł, Kotwicki T. Scoliosis Research Society (SRS) criteria and Society of Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT) 2008 guidelines in non-operative treatment of idiopathic scoliosis. Polish Orthop Traumatol. 2014;79:118–22.
21.
go back to reference Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA. 2003;289:559–67.CrossRef Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA. 2003;289:559–67.CrossRef
22.
go back to reference Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:447–55.CrossRef Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:447–55.CrossRef
23.
go back to reference Burton MS. Diagnosis and treatment of adolescent idiopathic scoliosis. Pediatr Ann. 2013;42:e233–7.CrossRef Burton MS. Diagnosis and treatment of adolescent idiopathic scoliosis. Pediatr Ann. 2013;42:e233–7.CrossRef
24.
go back to reference Siu King Cheung C, Tak Keung Lee W, Kit Tse Y, Ping Tang S, Man Lee K, Guo X, et al. Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine (Phila Pa 1976). 2003;28:2152–7.CrossRef Siu King Cheung C, Tak Keung Lee W, Kit Tse Y, Ping Tang S, Man Lee K, Guo X, et al. Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine (Phila Pa 1976). 2003;28:2152–7.CrossRef
25.
go back to reference Saczuk J, Wasiluk A, Wilczewski A. Body height and age at menarche of girls from eastern Poland in the period of political transformation. Anthropol Rev. 2018;81:130–45.CrossRef Saczuk J, Wasiluk A, Wilczewski A. Body height and age at menarche of girls from eastern Poland in the period of political transformation. Anthropol Rev. 2018;81:130–45.CrossRef
26.
go back to reference Grivas TB, Vasiliadis E, Mouzakis V, Mihas C, Koufopoulos G. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes. Scoliosis. 2006;1:9.CrossRef Grivas TB, Vasiliadis E, Mouzakis V, Mihas C, Koufopoulos G. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes. Scoliosis. 2006;1:9.CrossRef
27.
go back to reference Janusz P, Kotwicka M, Andrusiewicz M, Czaprowski D, Czubak J, Kotwicki T. Estrogen receptors genes polymorphisms and age at menarche in idiopathic scoliosis. BMC Musculoskelet Disord. 2014;15:383.CrossRef Janusz P, Kotwicka M, Andrusiewicz M, Czaprowski D, Czubak J, Kotwicki T. Estrogen receptors genes polymorphisms and age at menarche in idiopathic scoliosis. BMC Musculoskelet Disord. 2014;15:383.CrossRef
28.
go back to reference Zhu Z, Tang NL-S, Xu L, Qin X, Mao S, Song Y, et al. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat Commun. 2015;6:8355.CrossRef Zhu Z, Tang NL-S, Xu L, Qin X, Mao S, Song Y, et al. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat Commun. 2015;6:8355.CrossRef
29.
go back to reference Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T, et al. A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet. 2014;51:401–6.CrossRef Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T, et al. A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet. 2014;51:401–6.CrossRef
30.
go back to reference Subramanian V, Meyer BI, Gruss P. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell. 1995;83:641–53.CrossRef Subramanian V, Meyer BI, Gruss P. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell. 1995;83:641–53.CrossRef
31.
go back to reference Lohnes D. The Cdx1 homeodomain protein: an integrator of posterior signaling in the mouse. BioEssays. 2003;25:971–80.CrossRef Lohnes D. The Cdx1 homeodomain protein: an integrator of posterior signaling in the mouse. BioEssays. 2003;25:971–80.CrossRef
32.
go back to reference Krishnan M, Justice C, Swindle K, Wilson A, Miller N. Familial Idiopathic Scoliosis: A Replication Study of the CHD7 gene. In: ORS 2011 Annual Meeting; 2011. p. 1688. Krishnan M, Justice C, Swindle K, Wilson A, Miller N. Familial Idiopathic Scoliosis: A Replication Study of the CHD7 gene. In: ORS 2011 Annual Meeting; 2011. p. 1688.
33.
go back to reference Wise C. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis - Patent US 7.655,403 B2. 2010;:1–25. Wise C. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis - Patent US 7.655,403 B2. 2010;:1–25.
Metadata
Title
CHD7 gene polymorphisms in female patients with idiopathic scoliosis
Authors
Karolina Borysiak
Piotr Janusz
Mirosław Andrusiewicz
Małgorzata Chmielewska
Mateusz Kozinoga
Tomasz Kotwicki
Małgorzata Kotwicka
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-3031-0

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue