Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

01-12-2020 | Computed Tomography | Research article

Accuracy on the preoperative assessment of patients with adolescent idiopathic scoliosis using biplanar low-dose stereoradiography: a comparison with computed tomography

Authors: Kwong Hang Yeung, Gene Chi Wai Man, Tsz Ping Lam, Bobby Kin Wah Ng, Jack Chun Yiu Cheng, Winnie Chiu Wing Chu

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Although computed tomography (CT) is commonly used to diagnose the scoliotic spine in patients with adolescent idiopathic scoliosis (AIS) preoperatively, it is limited by the high radiation and prone scanning position. Recently, a new biplanar stereoradiography (EOS) was used to image the scoliotic spine in an upright posture with significantly less radiation in non-severe AIS subjects. However, its reliability to assess preoperative AIS patients remains unreported. Hence, the purpose of this study is to compare the scoliotic curvature between prone (CT) and upright positions (EOS) in preoperative AIS patients.

Methods

Thirty-three pre-operative AIS patients (mean age:18.4 ± 4.2) were recruited. EOS was used to scan the whole thoracic spine at upright position. Whereas on the same day, a conventional CT scan was used to evaluate the spine in prone position. The three-dimensional reconstruction of EOS and CT of the spine were then generated. Using previous validated techniques, multiple scoliotic parameters in both modalities were determined. The agreement between the two modalities was compared using the Bland-Altman test, whereas the correlation was assessed by the intraclass correlation coefficient (ICC).

Results

The mean ICC (prone and upright) of intra-rater/inter-rater reliabilities for the measured parameters were 0.985,0.961/0.969,0.903, respectively. Thoracic Cobb angles, intervertebral wedging and lumbar lordosis correlated significantly between upright EOS imaging radiographs (62.9 ± 9.3°,6.4 ± 2.9° and 48.8 ± 12.4°) and prone CT (47.3 ± 10.0°,5.8 ± 2.7° and 27.9 ± 11.4°; P < 0.001). The apical vertebral wedging and apical intervertebral disc wedging showed a good correlation among the two modalities (upright, 6.5 ± 3.5° and 6.4 ± 2.9°; prone, 6.5 ± 3.6° and 5.8 ± 2.7°; R2 ≥ 0.94; P < 0.01). Similarly, there was significant correlation in apical intervertebral rotation (R2 = 0.834; P < 0.01) between the prone CT (3.4 ± 3.0°) and upright EOS (3.8 ± 3.2°). In addition, the Cobb angle was significantly larger in upright EOS (62.9 ± 9.3°) than in prone CT (47.3 ± 10.0°, P < 0.01) position. There was significant underestimation on scoliotic severity in the prone position when compared with upright position.

Conclusions

Importantly, the image acquisition and reconstruction from EOS can better provide accurate three-dimensional spinal representations of the scoliotic curvature in preoperative AIS patients. Moreover, our findings suggested that scoliotic curvatures in preoperative AIS patients can be largely represented by both imaging modalities despite the difference in body positioning.
Literature
1.
go back to reference Poncet P, Dansereau J, Labelle H. Geometric torsion in idiopathic scoliosis: three-dimensional analysis and proposal for a new classification. Spine. 2001;26:2235–43.CrossRef Poncet P, Dansereau J, Labelle H. Geometric torsion in idiopathic scoliosis: three-dimensional analysis and proposal for a new classification. Spine. 2001;26:2235–43.CrossRef
2.
go back to reference Westrick ER, Ward WT. Adolescent idiopathic scoliosis: 5-year to 20-year evidence-based surgical results. J Pediatr Orthop. 2011;31(1 Suppl):S61–8.CrossRef Westrick ER, Ward WT. Adolescent idiopathic scoliosis: 5-year to 20-year evidence-based surgical results. J Pediatr Orthop. 2011;31(1 Suppl):S61–8.CrossRef
3.
go back to reference Brink RC, Schlösser TPC, Colo D, Vincken KL, van Stralen M, Hui SCN, et al. Asymmetry of the vertebral body and pedicles in the true transverse plane in adolescent idiopathic scoliosis: a CT-based study. Spine Deform. 2017;5:37–45.CrossRef Brink RC, Schlösser TPC, Colo D, Vincken KL, van Stralen M, Hui SCN, et al. Asymmetry of the vertebral body and pedicles in the true transverse plane in adolescent idiopathic scoliosis: a CT-based study. Spine Deform. 2017;5:37–45.CrossRef
4.
go back to reference Brink RC, Colo D, Schlösser TPC, Vincken KL, van Stralen M, Hui SCN, et al. Upright, prone, and supine spinal morphology and alignment in adolescent idiopathic scoliosis. Scoliosis Spinal Disord. 2017;12:6.CrossRef Brink RC, Colo D, Schlösser TPC, Vincken KL, van Stralen M, Hui SCN, et al. Upright, prone, and supine spinal morphology and alignment in adolescent idiopathic scoliosis. Scoliosis Spinal Disord. 2017;12:6.CrossRef
5.
go back to reference Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine. 2012;37:1391–7.CrossRef Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine. 2012;37:1391–7.CrossRef
6.
go back to reference Schroeder J, Reer R, Braumann KM. Video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters. Eur Spine J. 2015;24:262–9.CrossRef Schroeder J, Reer R, Braumann KM. Video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters. Eur Spine J. 2015;24:262–9.CrossRef
7.
go back to reference Padulo J, Giai Via A, Ardigò LP. Letter to the editor concerning “video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters” by Schroeder J, Reer R, Braumann KM (2015) Eur spine J 24(2):262-269. Eur Spine J. 2015;24:2100–1.CrossRef Padulo J, Giai Via A, Ardigò LP. Letter to the editor concerning “video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters” by Schroeder J, Reer R, Braumann KM (2015) Eur spine J 24(2):262-269. Eur Spine J. 2015;24:2100–1.CrossRef
8.
go back to reference Padulo J, Ardigò LP. Vertebral rotation in adolescent idiopathic scoliosis calculated by radiograph and back surface analysis-based methods: correlation between the Raimondi method and rasterstereography. Eur Spine J;22:2336–2337 : Statistical perspectives part II. Eur Spine J. 2014;23:922–3.CrossRef Padulo J, Ardigò LP. Vertebral rotation in adolescent idiopathic scoliosis calculated by radiograph and back surface analysis-based methods: correlation between the Raimondi method and rasterstereography. Eur Spine J;22:2336–2337 : Statistical perspectives part II. Eur Spine J. 2014;23:922–3.CrossRef
9.
go back to reference Padulo J, Ardigò LP. Letter to the Editor concerning “Vertebral rotation in adolescent idiopathic scoliosis calculated by radiograph and back surface analysis-based methods: correlation between the Raimondi method and rasterstereography”. Eur Spine J. 2013;22:2336–7.CrossRef Padulo J, Ardigò LP. Letter to the Editor concerning “Vertebral rotation in adolescent idiopathic scoliosis calculated by radiograph and back surface analysis-based methods: correlation between the Raimondi method and rasterstereography”. Eur Spine J. 2013;22:2336–7.CrossRef
10.
go back to reference Kalifa G, Charpak Y, Maccia C, Fery-Lemonnier E, Bloch J, Boussard JM, et al. Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol. 1998;28:557–61.CrossRef Kalifa G, Charpak Y, Maccia C, Fery-Lemonnier E, Bloch J, Boussard JM, et al. Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol. 1998;28:557–61.CrossRef
11.
go back to reference Nault M-L, Mac-Thiong J-M, Roy-Beaudry M, Turgeon I, Deguise J, Labelle H, et al. Three-dimensional spinal morphology can differentiate between progressive and nonprogressive patients with adolescent idiopathic scoliosis at the initial presentation: a prospective study. Spine. 2014;39:E601–6. Nault M-L, Mac-Thiong J-M, Roy-Beaudry M, Turgeon I, Deguise J, Labelle H, et al. Three-dimensional spinal morphology can differentiate between progressive and nonprogressive patients with adolescent idiopathic scoliosis at the initial presentation: a prospective study. Spine. 2014;39:E601–6.
12.
go back to reference Perdriolle R, Vidal J. A study of scoliotic curve. The importance of extension and vertebral rotation (author’s transl). Rev Chir Orthop Reparatrice Appar Mot. 1981;67:25–34.PubMed Perdriolle R, Vidal J. A study of scoliotic curve. The importance of extension and vertebral rotation (author’s transl). Rev Chir Orthop Reparatrice Appar Mot. 1981;67:25–34.PubMed
13.
go back to reference Steib J-P, Dumas R, Mitton D, Skalli W. Surgical correction of scoliosis by in situ contouring: a detorsion analysis. Spine. 2004;29:193–9.CrossRef Steib J-P, Dumas R, Mitton D, Skalli W. Surgical correction of scoliosis by in situ contouring: a detorsion analysis. Spine. 2004;29:193–9.CrossRef
14.
go back to reference Stokes IA. Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society working group on 3-D terminology of spinal deformity. Spine. 1994;19:236–48.CrossRef Stokes IA. Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society working group on 3-D terminology of spinal deformity. Spine. 1994;19:236–48.CrossRef
15.
go back to reference Aitman DG, Bland JM. Measurement in Medicine: the Analysis of Method Comparison Studies. Stat. 1983;32:307–17. Aitman DG, Bland JM. Measurement in Medicine: the Analysis of Method Comparison Studies. Stat. 1983;32:307–17.
16.
go back to reference Van Goethem J, Van Campenhout A, van den Hauwe L, Parizel PM. Scoliosis. Neuroimaging Clin N Am. 2007;17:105–15.CrossRef Van Goethem J, Van Campenhout A, van den Hauwe L, Parizel PM. Scoliosis. Neuroimaging Clin N Am. 2007;17:105–15.CrossRef
17.
go back to reference Hui SCN, Pialasse J-P, Wong JYH, Lam T-P, Ng BKW, Cheng JCY, et al. Radiation dose of digital radiography (DR) versus micro-dose x-ray (EOS) on patients with adolescent idiopathic scoliosis: 2016 SOSORT- IRSSD “John Sevastic award” winner in imaging research. Scoliosis Spinal Disord. 2016;11:46.CrossRef Hui SCN, Pialasse J-P, Wong JYH, Lam T-P, Ng BKW, Cheng JCY, et al. Radiation dose of digital radiography (DR) versus micro-dose x-ray (EOS) on patients with adolescent idiopathic scoliosis: 2016 SOSORT- IRSSD “John Sevastic award” winner in imaging research. Scoliosis Spinal Disord. 2016;11:46.CrossRef
18.
go back to reference Dietrich TJ, Pfirrmann CWA, Schwab A, Pankalla K, Buck FM. Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Skelet Radiol. 2013;42:959–67.CrossRef Dietrich TJ, Pfirrmann CWA, Schwab A, Pankalla K, Buck FM. Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Skelet Radiol. 2013;42:959–67.CrossRef
19.
go back to reference Ilharreborde B, Ferrero E, Alison M, Mazda K. EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J. 2016;25:526–31.CrossRef Ilharreborde B, Ferrero E, Alison M, Mazda K. EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J. 2016;25:526–31.CrossRef
20.
go back to reference Le Bras A, Laporte S, Mitton D, de Guise JA, Skalli W. 3D detailed reconstruction of vertebrae with low dose digital stereoradiography. Stud Health Technol Inform. 2002;91:286–90.PubMed Le Bras A, Laporte S, Mitton D, de Guise JA, Skalli W. 3D detailed reconstruction of vertebrae with low dose digital stereoradiography. Stud Health Technol Inform. 2002;91:286–90.PubMed
21.
go back to reference Le Bras A, Laporte S, Bousson V, Mitton D, De Guise JA, Laredo JD, et al. 3D reconstruction of the proximal femur with low-dose digital stereoradiography. Comput Aided Surg Off J Int Soc Comput Aided Surg. 2004;9:51–7.CrossRef Le Bras A, Laporte S, Bousson V, Mitton D, De Guise JA, Laredo JD, et al. 3D reconstruction of the proximal femur with low-dose digital stereoradiography. Comput Aided Surg Off J Int Soc Comput Aided Surg. 2004;9:51–7.CrossRef
22.
go back to reference Somoskeöy S, Tunyogi-Csapó M, Bogyó C, Illés T. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J Off J North Am Spine Soc. 2012;12:1052–9.CrossRef Somoskeöy S, Tunyogi-Csapó M, Bogyó C, Illés T. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J Off J North Am Spine Soc. 2012;12:1052–9.CrossRef
23.
go back to reference Nérot A, Choisne J, Amabile C, Travert C, Pillet H, Wang X, et al. A 3D reconstruction method of the body envelope from biplanar X-rays: evaluation of its accuracy and reliability. J Biomech. 2015;48:4322–6.CrossRef Nérot A, Choisne J, Amabile C, Travert C, Pillet H, Wang X, et al. A 3D reconstruction method of the body envelope from biplanar X-rays: evaluation of its accuracy and reliability. J Biomech. 2015;48:4322–6.CrossRef
24.
go back to reference Al-Aubaidi Z, Lebel D, Oudjhane K, Zeller R. Three-dimensional imaging of the spine using the EOS system: is it reliable? A comparative study using computed tomography imaging. J Pediatr Orthop Part B. 2013;22:409–12.CrossRef Al-Aubaidi Z, Lebel D, Oudjhane K, Zeller R. Three-dimensional imaging of the spine using the EOS system: is it reliable? A comparative study using computed tomography imaging. J Pediatr Orthop Part B. 2013;22:409–12.CrossRef
26.
go back to reference el-Khoury GY, Whitten CG. Trauma to the upper thoracic spine: anatomy, biomechanics, and unique imaging features. AJR Am J Roentgenol. 1993;160:95–102.CrossRef el-Khoury GY, Whitten CG. Trauma to the upper thoracic spine: anatomy, biomechanics, and unique imaging features. AJR Am J Roentgenol. 1993;160:95–102.CrossRef
27.
go back to reference Andriacchi T, Schultz A, Belytschko T, Galante J. A model for studies of mechanical interactions between the human spine and rib cage. J Biomech. 1974;7:497–507.CrossRef Andriacchi T, Schultz A, Belytschko T, Galante J. A model for studies of mechanical interactions between the human spine and rib cage. J Biomech. 1974;7:497–507.CrossRef
28.
go back to reference Yazici M, Acaroglu ER, Alanay A, Deviren V, Cila A, Surat A. Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop. 2001;21:252–6.PubMed Yazici M, Acaroglu ER, Alanay A, Deviren V, Cila A, Surat A. Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop. 2001;21:252–6.PubMed
29.
go back to reference Lee MC, Solomito M, Patel A. Supine magnetic resonance imaging cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine. 2013;38:E656–61.CrossRef Lee MC, Solomito M, Patel A. Supine magnetic resonance imaging cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine. 2013;38:E656–61.CrossRef
Metadata
Title
Accuracy on the preoperative assessment of patients with adolescent idiopathic scoliosis using biplanar low-dose stereoradiography: a comparison with computed tomography
Authors
Kwong Hang Yeung
Gene Chi Wai Man
Tsz Ping Lam
Bobby Kin Wah Ng
Jack Chun Yiu Cheng
Winnie Chiu Wing Chu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03561-2

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue