Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Research article

Physical function and lean body mass as predictors of bone loss after hip fracture: a prospective follow-up study

Authors: Tuuli H. Suominen, Johanna Edgren, Anu Salpakoski, Mauri Kallinen, Tomas Cervinka, Timo Rantalainen, Timo Törmäkangas, Ari Heinonen, Sarianna Sipilä

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Predictors of bone deterioration after hip fracture have not been well characterized. The aim of this study was to examine the associations of physical function and lean body mass (LBM) with loss of bone density and strength in older people recovering from a hip fracture.

Methods

A total of 81 over 60-year-old, community-dwelling men and women operated for a hip fracture participated in this 1-year prospective follow-up study. Distal tibia total volumetric bone mineral density (vBMDTOT, mg/cm3) and compressive strength index (BSI, g2/cm4) and mid-tibia cortical vBMD (vBMDCO, mg/cm3) and bending strength index (SSI, mm3) were assessed in both legs by peripheral quantitative computed tomography (pQCT) at baseline (on average 10 weeks after fracture) and at 12 months. At baseline, LBM was measured with a bioimpedance device and physical function with the Short Physical Performance Battery (SPPB) and perceived difficulty in walking outdoors. Robust multivariable linear regression models were used to estimate the associations of physical function and LBM with the change in bone parameters at 12-months.

Results

The mean change in distal tibia vBMDTOT and BSI in both legs ranged from − 0.9 to − 2.5%. The change in mid-tibia vBMDCO and SSI ranged from − 0.5 to − 2.1%. A lower SPPB score, difficulty in walking outdoors and lower LBM predicted greater decline in distal tibia vBMDTOT in both legs. A lower SPPB score and difficulty in walking outdoors were also associated with a greater decline in distal tibia BSI in both legs. At the midshaft site, a lower SPPB score and lower LBM were associated with greater decline in SSI on the fractured side.

Conclusions

Older hip fracture patients with low physical function and lower LBM may be at risk for greater decline in tibia bone properties during the first post-fracture year. Acknowledgement of the risk factors could assist in developing interventions and care to promote bone health and overall recovery.

Trial registration

ISRCTN, ISRCTN53680197. The trial was registered retrospectively but before the recruitment was completed. Registered March 3, 2010.
Literature
1.
go back to reference Fox KM, Magaziner J, Hawkes WG, Yu-Yahiro J, Hebel JR, Zimmerman SI, et al. Loss of bone density and lean body mass after hip fracture. Osteoporos Int. 2000;11(1):31–5.CrossRef Fox KM, Magaziner J, Hawkes WG, Yu-Yahiro J, Hebel JR, Zimmerman SI, et al. Loss of bone density and lean body mass after hip fracture. Osteoporos Int. 2000;11(1):31–5.CrossRef
2.
go back to reference Wehren LE, Hawkes WG, Hebel JR, Orwig DL, Magaziner J. Bone mineral density, soft tissue body composition, strength, and functioning after hip fracture. J Gerontol A Biol Sci Med Sci. 2005;60(1):80–4.CrossRef Wehren LE, Hawkes WG, Hebel JR, Orwig DL, Magaziner J. Bone mineral density, soft tissue body composition, strength, and functioning after hip fracture. J Gerontol A Biol Sci Med Sci. 2005;60(1):80–4.CrossRef
3.
go back to reference Vochteloo AJ, Moerman S, Tuinebreijer WE, Maier AB, de Vries MR, Bloem RM, et al. More than half of hip fracture patients do not regain mobility in the first postoperative year. Geriatr Gerontol Int. 2013;13(2):334–41.CrossRef Vochteloo AJ, Moerman S, Tuinebreijer WE, Maier AB, de Vries MR, Bloem RM, et al. More than half of hip fracture patients do not regain mobility in the first postoperative year. Geriatr Gerontol Int. 2013;13(2):334–41.CrossRef
5.
go back to reference Magaziner J, Wehren L, Hawkes WG, Orwig D, Hebel JR, Fredman L, et al. Women with hip fracture have a greater rate of decline in bone mineral density than expected: another significant consequence of a common geriatric problem. Osteoporos Int. 2006;17(7):971–7.CrossRef Magaziner J, Wehren L, Hawkes WG, Orwig D, Hebel JR, Fredman L, et al. Women with hip fracture have a greater rate of decline in bone mineral density than expected: another significant consequence of a common geriatric problem. Osteoporos Int. 2006;17(7):971–7.CrossRef
6.
go back to reference Mikkola T, Sipila S, Portegijs E, Kallinen M, Alen M, Kiviranta I, et al. Impaired geometric properties of tibia in older women with hip fracture history. Osteoporos Int. 2007;18(8):1083–90.CrossRef Mikkola T, Sipila S, Portegijs E, Kallinen M, Alen M, Kiviranta I, et al. Impaired geometric properties of tibia in older women with hip fracture history. Osteoporos Int. 2007;18(8):1083–90.CrossRef
7.
go back to reference Reider L, Beck TJ, Hochberg MC, Hawkes WG, Orwig D, YuYahiro JA, et al. Women with hip fracture experience greater loss of geometric strength in the contralateral hip during the year following fracture than age-matched controls. Osteoporos Int. 2010;21(5):741–50.CrossRef Reider L, Beck TJ, Hochberg MC, Hawkes WG, Orwig D, YuYahiro JA, et al. Women with hip fracture experience greater loss of geometric strength in the contralateral hip during the year following fracture than age-matched controls. Osteoporos Int. 2010;21(5):741–50.CrossRef
8.
go back to reference Rathbun AM, Shardell M, Orwig D, Hebel JR, Hicks GE, Beck TJ, et al. Difference in the trajectory of change in bone geometry as measured by hip structural analysis in the narrow neck, intertrochanteric region, and femoral shaft between men and women following hip fracture. Bone. 2016;92:124–31.CrossRef Rathbun AM, Shardell M, Orwig D, Hebel JR, Hicks GE, Beck TJ, et al. Difference in the trajectory of change in bone geometry as measured by hip structural analysis in the narrow neck, intertrochanteric region, and femoral shaft between men and women following hip fracture. Bone. 2016;92:124–31.CrossRef
9.
go back to reference Rathbun AM, Shardell M, Orwig D, Hebel JR, Hicks GE, Beck T, et al. Differences in the trajectory of bone mineral density change measured at the total hip and femoral neck between men and women following hip fracture. Arch Osteoporos. 2016;11:9–6 Epub 2016 Feb 4.CrossRef Rathbun AM, Shardell M, Orwig D, Hebel JR, Hicks GE, Beck T, et al. Differences in the trajectory of bone mineral density change measured at the total hip and femoral neck between men and women following hip fracture. Arch Osteoporos. 2016;11:9–6 Epub 2016 Feb 4.CrossRef
10.
go back to reference Suominen TH, Edgren J, Salpakoski A, Arkela M, Kallinen M, Cervinka T, et al. Effects of a home-based physical rehabilitation program on tibial bone structure, density, and strength after hip fracture: a secondary analysis of a randomized controlled trial. JBMR Plus. 2019;3(6):e10175.CrossRef Suominen TH, Edgren J, Salpakoski A, Arkela M, Kallinen M, Cervinka T, et al. Effects of a home-based physical rehabilitation program on tibial bone structure, density, and strength after hip fracture: a secondary analysis of a randomized controlled trial. JBMR Plus. 2019;3(6):e10175.CrossRef
11.
go back to reference Berry SD, Samelson EJ, Hannan MT, McLean RR, Lu M, Cupples LA, et al. Second hip fracture in older men and women: the Framingham study. Arch Intern Med. 2007;167(18):1971–6.CrossRef Berry SD, Samelson EJ, Hannan MT, McLean RR, Lu M, Cupples LA, et al. Second hip fracture in older men and women: the Framingham study. Arch Intern Med. 2007;167(18):1971–6.CrossRef
12.
go back to reference Lonnroos E, Kautiainen H, Karppi P, Hartikainen S, Kiviranta I, Sulkava R. Incidence of second hip fractures. A population-based study. Osteoporos Int. 2007;18(9):1279–85.CrossRef Lonnroos E, Kautiainen H, Karppi P, Hartikainen S, Kiviranta I, Sulkava R. Incidence of second hip fractures. A population-based study. Osteoporos Int. 2007;18(9):1279–85.CrossRef
13.
go back to reference Sipilä S, Salpakoski A, Edgren J, Sihvonen SE, Turunen K, Pesola M, et al. Recovery of lower extremity performance after hip fracture depends on prefracture and postdischarge mobility: a subgroup analysis of a randomized rehabilitation trial. J Am Geriatr Soc. 2016;64(9):25.CrossRef Sipilä S, Salpakoski A, Edgren J, Sihvonen SE, Turunen K, Pesola M, et al. Recovery of lower extremity performance after hip fracture depends on prefracture and postdischarge mobility: a subgroup analysis of a randomized rehabilitation trial. J Am Geriatr Soc. 2016;64(9):25.CrossRef
14.
go back to reference Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12(10):1547–51.CrossRef Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12(10):1547–51.CrossRef
15.
go back to reference Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine. 2014;45(2):165–77.CrossRef Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine. 2014;45(2):165–77.CrossRef
16.
go back to reference Di Monaco M, Vallero F, Di Monaco R, Tappero R, Cavanna A. Muscle mass and functional recovery in men with hip fracture. Am J Phys Med Rehabil. 2007;86(10):818–25.CrossRef Di Monaco M, Vallero F, Di Monaco R, Tappero R, Cavanna A. Muscle mass and functional recovery in men with hip fracture. Am J Phys Med Rehabil. 2007;86(10):818–25.CrossRef
17.
go back to reference Wehren LE, Hawkes WG, Hebel JR, Orwig D, Zimmerman SI, Fox KM, et al. Predictors of bone loss after hip fracture. Osteoporos Int. 2004;15(2):125–31.CrossRef Wehren LE, Hawkes WG, Hebel JR, Orwig D, Zimmerman SI, Fox KM, et al. Predictors of bone loss after hip fracture. Osteoporos Int. 2004;15(2):125–31.CrossRef
18.
go back to reference Salpakoski A, Tormakangas T, Edgren J, Kallinen M, Sihvonen SE, Pesola M, et al. Effects of a multicomponent home-based physical rehabilitation program on mobility recovery after hip fracture: a randomized controlled trial. J Am Med Dir Assoc. 2014;15(5):361–8.CrossRef Salpakoski A, Tormakangas T, Edgren J, Kallinen M, Sihvonen SE, Pesola M, et al. Effects of a multicomponent home-based physical rehabilitation program on mobility recovery after hip fracture: a randomized controlled trial. J Am Med Dir Assoc. 2014;15(5):361–8.CrossRef
19.
go back to reference Sipila S, Salpakoski A, Edgren J, Heinonen A, Kauppinen MA, Arkela-Kautiainen M, et al. Promoting mobility after hip fracture (ProMo): study protocol and selected baseline results of a year-long randomized controlled trial among community-dwelling older people. BMC Musculoskelet Disord. 2011;12:277.CrossRef Sipila S, Salpakoski A, Edgren J, Heinonen A, Kauppinen MA, Arkela-Kautiainen M, et al. Promoting mobility after hip fracture (ProMo): study protocol and selected baseline results of a year-long randomized controlled trial among community-dwelling older people. BMC Musculoskelet Disord. 2011;12:277.CrossRef
20.
go back to reference Visser M, Harris TB, Fox KM, Hawkes W, Hebel JR, Yahiro JY, et al. Change in muscle mass and muscle strength after a hip fracture: relationship to mobility recovery. J Gerontol A Biol Sci Med Sci. 2000;55(8):434.CrossRef Visser M, Harris TB, Fox KM, Hawkes W, Hebel JR, Yahiro JY, et al. Change in muscle mass and muscle strength after a hip fracture: relationship to mobility recovery. J Gerontol A Biol Sci Med Sci. 2000;55(8):434.CrossRef
21.
go back to reference Cervinka T, Hyttinen J, Sievanen H. Threshold-free automatic detection of cortical bone geometry by peripheral quantitative computed tomography. J Clin Densitom. 2012;15(4):413–21.CrossRef Cervinka T, Hyttinen J, Sievanen H. Threshold-free automatic detection of cortical bone geometry by peripheral quantitative computed tomography. J Clin Densitom. 2012;15(4):413–21.CrossRef
22.
go back to reference Cervinka T, Sievanen H, Lala D, Cheung AM, Giangregorio L, Hyttinen J. A new algorithm to improve assessment of cortical bone geometry in pQCT. Bone. 2015;81:721–30.CrossRef Cervinka T, Sievanen H, Lala D, Cheung AM, Giangregorio L, Hyttinen J. A new algorithm to improve assessment of cortical bone geometry in pQCT. Bone. 2015;81:721–30.CrossRef
23.
go back to reference Rantalainen T, Heinonen A, Komi PV, Linnamo V. Neuromuscular performance and bone structural characteristics in young healthy men and women. Eur J Appl Physiol. 2008;102(2):215–22.CrossRef Rantalainen T, Heinonen A, Komi PV, Linnamo V. Neuromuscular performance and bone structural characteristics in young healthy men and women. Eur J Appl Physiol. 2008;102(2):215–22.CrossRef
24.
go back to reference Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):85.CrossRef Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):85.CrossRef
25.
go back to reference Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–34.CrossRef Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–34.CrossRef
26.
go back to reference Venables WN, Ripley BD. Modern applied statistics with S-PLUS. 3rd ed. New York: Springer; 1999.CrossRef Venables WN, Ripley BD. Modern applied statistics with S-PLUS. 3rd ed. New York: Springer; 1999.CrossRef
27.
go back to reference Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332(9):556–61.CrossRef Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332(9):556–61.CrossRef
28.
go back to reference van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3):1–67.CrossRef van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3):1–67.CrossRef
29.
go back to reference Portegijs E, Tsai L, Rantanen T, Rantakokko M. Moving through life-space areas and objectively measured physical activity of older people. PLoS One. 2015;10(8):e0135308.CrossRef Portegijs E, Tsai L, Rantanen T, Rantakokko M. Moving through life-space areas and objectively measured physical activity of older people. PLoS One. 2015;10(8):e0135308.CrossRef
30.
go back to reference Kim KM, Lim S, Oh TJ, Moon JH, Choi SH, Lim JY, et al. Longitudinal changes in muscle mass and strength, and bone mass in older adults: gender-specific associations between muscle and bone losses. J Gerontol A Biol Sci Med Sci. 2018;73(8):1062–9.CrossRef Kim KM, Lim S, Oh TJ, Moon JH, Choi SH, Lim JY, et al. Longitudinal changes in muscle mass and strength, and bone mass in older adults: gender-specific associations between muscle and bone losses. J Gerontol A Biol Sci Med Sci. 2018;73(8):1062–9.CrossRef
Metadata
Title
Physical function and lean body mass as predictors of bone loss after hip fracture: a prospective follow-up study
Authors
Tuuli H. Suominen
Johanna Edgren
Anu Salpakoski
Mauri Kallinen
Tomas Cervinka
Timo Rantalainen
Timo Törmäkangas
Ari Heinonen
Sarianna Sipilä
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03401-3

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue