Skip to main content
Top
Published in: Endocrine 2/2014

01-03-2014 | Review

Muscle–bone interactions: basic and clinical aspects

Authors: Luisella Cianferotti, Maria Luisa Brandi

Published in: Endocrine | Issue 2/2014

Login to get access

Abstract

Muscle and bone are anatomically and functionally closely connected. The traditional concept that skeletal muscles serve to load bone and transform skeletal segments into a system of levers has been further refined into the mechanostat theory, according to which striated muscle is essential for bone development and maintenance, modelling and remodelling. Besides biomechanical function, skeletal muscle and bone are endocrine organs able to secrete factors capable of modulating biological function within their microenvironment, in nearby tissues or in distant organs. The endocrine properties of muscle and bone may serve to sense and transduce biomechanical signals such as loading, unloading or exercise, or systemic hormonal stimuli into biochemical signals. Nonetheless, given the close anatomical relationship between skeletal muscle and bone, paracrine interactions particularly at the periosteal interface can be hypothesized. These mechanisms can assume particular importance during bone and muscle healing after musculoskeletal injury. Basic studies in vitro and in rodents have helped to dissect the multiple influences of skeletal muscle on bone and/or expression of inside-organ metabolism and have served to explain clinical observations linking muscle-to-bone quality. Recent evidences pinpoint that also bone tissue is able to modulate directly or indirectly skeletal muscle metabolism, thus empowering the crosstalk hypothesis to be further tested in humans in vivo.
Literature
1.
go back to reference D.B. Burr, A.G. Robling, C.H. Turner, Effects of biomechanical stress on bones in animals. Bone 30, 781–786 (2002)PubMed D.B. Burr, A.G. Robling, C.H. Turner, Effects of biomechanical stress on bones in animals. Bone 30, 781–786 (2002)PubMed
2.
go back to reference Y.X. Qin, H. Lam, S. Ferreri, C. Rubin, Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 10, 12–24 (2010)PubMed Y.X. Qin, H. Lam, S. Ferreri, C. Rubin, Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 10, 12–24 (2010)PubMed
3.
go back to reference D.J. DiGirolamo, T.L. Clemens, S. Kousteni, The skeleton as an endocrine organ. Nat. Rev. Rheumatol. 8, 674–683 (2012)PubMed D.J. DiGirolamo, T.L. Clemens, S. Kousteni, The skeleton as an endocrine organ. Nat. Rev. Rheumatol. 8, 674–683 (2012)PubMed
4.
go back to reference G. Karsenty, F. Oury, Biology without walls: the novel endocrinology of bone. Ann. Rev. Physiol. 74, 87–105 (2012) G. Karsenty, F. Oury, Biology without walls: the novel endocrinology of bone. Ann. Rev. Physiol. 74, 87–105 (2012)
5.
go back to reference S.C. Forbes, J.P. Little, D.G. Candow, Exercise and nutritional interventions for improving aging muscle health. Endocrine 42, 29–38 (2012)PubMed S.C. Forbes, J.P. Little, D.G. Candow, Exercise and nutritional interventions for improving aging muscle health. Endocrine 42, 29–38 (2012)PubMed
6.
go back to reference B.K. Pedersen, Muscles and their myokines. J. Exp. Biol. 214, 337–346 (2011)PubMed B.K. Pedersen, Muscles and their myokines. J. Exp. Biol. 214, 337–346 (2011)PubMed
7.
go back to reference F. Norheim, T. Raastad, B. Thiede, A.C. Rustan, C.A. Drevon, F. Haugen, Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am. J. Physiol. Endocrinol. Metab. 301, E1013–E1021 (2011)PubMed F. Norheim, T. Raastad, B. Thiede, A.C. Rustan, C.A. Drevon, F. Haugen, Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am. J. Physiol. Endocrinol. Metab. 301, E1013–E1021 (2011)PubMed
8.
go back to reference S. Bortoluzzi, P. Scannapieco, A. Cestaro, G.A. Danieli, S. Schiaffino, Computational reconstruction of the human skeletal muscle secretome. Proteins 62, 776–792 (2006)PubMed S. Bortoluzzi, P. Scannapieco, A. Cestaro, G.A. Danieli, S. Schiaffino, Computational reconstruction of the human skeletal muscle secretome. Proteins 62, 776–792 (2006)PubMed
9.
go back to reference B.K. Pedersen, M.A. Febbraio, Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012)PubMed B.K. Pedersen, M.A. Febbraio, Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012)PubMed
11.
go back to reference E. Seeman, J.L. Hopper, N.R. Young, C. Formica, P. Goss, C. Tsalamandris, Do genetic factors explain associations between muscle strength, lean mass, and bone density? a twin study. Am. J. Physiol. 270, E320–E327 (1996)PubMed E. Seeman, J.L. Hopper, N.R. Young, C. Formica, P. Goss, C. Tsalamandris, Do genetic factors explain associations between muscle strength, lean mass, and bone density? a twin study. Am. J. Physiol. 270, E320–E327 (1996)PubMed
12.
go back to reference D. Karasik, D.P. Kiel, Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone 46, 1226–1237 (2010)PubMed D. Karasik, D.P. Kiel, Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone 46, 1226–1237 (2010)PubMed
13.
go back to reference D. Karasik, C.L. Cheung, Y. Zhou, L.A. Cupples, D.P. Kiel, S. Demissie, Genome-wide association of an integrated osteoporosis-related phenotype: is there evidence for pleiotropic genes? J. Bone Miner. Res. 27, 319–330 (2012)PubMedCentralPubMed D. Karasik, C.L. Cheung, Y. Zhou, L.A. Cupples, D.P. Kiel, S. Demissie, Genome-wide association of an integrated osteoporosis-related phenotype: is there evidence for pleiotropic genes? J. Bone Miner. Res. 27, 319–330 (2012)PubMedCentralPubMed
14.
go back to reference C. Cooper, W. Dere, W. Evans, J.A. Kanis, R. Rizzoli, A.A. Sayer, C.C. Sieber, J.M. Kaufman, G. Abellan van Kan, S. Boonen, J. Adachi, B. Mitlak, Y. Tsouderos, Y. Rolland, J.Y. Reginster, Frailty and sarcopenia: definitions and outcome parameters. Osteoporos. Int. 23, 1839–1848 (2012)PubMed C. Cooper, W. Dere, W. Evans, J.A. Kanis, R. Rizzoli, A.A. Sayer, C.C. Sieber, J.M. Kaufman, G. Abellan van Kan, S. Boonen, J. Adachi, B. Mitlak, Y. Tsouderos, Y. Rolland, J.Y. Reginster, Frailty and sarcopenia: definitions and outcome parameters. Osteoporos. Int. 23, 1839–1848 (2012)PubMed
16.
go back to reference A. Tajar, I.T. Huhtaniemi, T.W. O’Neill, J.D. Finn, S.R. Pye, D.M. Lee, G. Bartfai, S. Boonen, F.F. Casanueva, G. Forti, A. Giwercman, T.S. Han, K. Kula, F. Labrie, M.E. Lean, N. Pendleton, M. Punab, D. Vanderschueren, F.C. Wu, EMAS Group, Characteristics of androgen deficiency in late-onset hypogonadism: results from the European Male Aging Study (EMAS). J. Clin. Endocrinol. Metab. 97, 1508–1516 (2012)PubMed A. Tajar, I.T. Huhtaniemi, T.W. O’Neill, J.D. Finn, S.R. Pye, D.M. Lee, G. Bartfai, S. Boonen, F.F. Casanueva, G. Forti, A. Giwercman, T.S. Han, K. Kula, F. Labrie, M.E. Lean, N. Pendleton, M. Punab, D. Vanderschueren, F.C. Wu, EMAS Group, Characteristics of androgen deficiency in late-onset hypogonadism: results from the European Male Aging Study (EMAS). J. Clin. Endocrinol. Metab. 97, 1508–1516 (2012)PubMed
17.
go back to reference M. Spitzer, G. Huang, S. Basaria, T.G. Travison, S. Bhasin, Risks and benefits of testosterone therapy in older men. Nat. Rev. Endocrinol. 9, 414–424 (2013)PubMed M. Spitzer, G. Huang, S. Basaria, T.G. Travison, S. Bhasin, Risks and benefits of testosterone therapy in older men. Nat. Rev. Endocrinol. 9, 414–424 (2013)PubMed
18.
go back to reference P. Lips, N.M. van Schoor, The effect of vitamin D on bone and osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 25, 585–591 (2011)PubMed P. Lips, N.M. van Schoor, The effect of vitamin D on bone and osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 25, 585–591 (2011)PubMed
19.
go back to reference H.A. Bischoff-Ferrari, Relevance of vitamin D in muscle health. Rev. Endocr. Metab. Disord. 13, 71–77 (2012)PubMed H.A. Bischoff-Ferrari, Relevance of vitamin D in muscle health. Rev. Endocr. Metab. Disord. 13, 71–77 (2012)PubMed
20.
go back to reference L. Ceglia, S.S. Harris, Vitamin D and its role in skeletal muscle. Calcif. Tissue Int. 92, 151–162 (2013)PubMed L. Ceglia, S.S. Harris, Vitamin D and its role in skeletal muscle. Calcif. Tissue Int. 92, 151–162 (2013)PubMed
21.
go back to reference C.M. Girgis, R.J. Clifton-Bligh, M.W. Hamrick, M.F. Holick, J.E. Gunton, The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr. Rev. 34, 33–83 (2013)PubMed C.M. Girgis, R.J. Clifton-Bligh, M.W. Hamrick, M.F. Holick, J.E. Gunton, The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr. Rev. 34, 33–83 (2013)PubMed
22.
go back to reference L. Schubert, H.F. DeLuca, Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch. Biochem. Biophys. 500, 157–161 (2010)PubMed L. Schubert, H.F. DeLuca, Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch. Biochem. Biophys. 500, 157–161 (2010)PubMed
23.
go back to reference H.F. Wang, Y. DeLuca, Is the vitamin D receptor found in muscle? Endocrinology 152, 354–363 (2011)PubMed H.F. Wang, Y. DeLuca, Is the vitamin D receptor found in muscle? Endocrinology 152, 354–363 (2011)PubMed
24.
go back to reference K.B. Hagen, H. Dagfinrud, R.H. Moe, N. Østerås, I. Kjeken, M. Grotle, G. Smedslund, Exercise therapy for bone and muscle health: an overview of systematic reviews. BMC Med. 10, 167 (2012)PubMedCentralPubMed K.B. Hagen, H. Dagfinrud, R.H. Moe, N. Østerås, I. Kjeken, M. Grotle, G. Smedslund, Exercise therapy for bone and muscle health: an overview of systematic reviews. BMC Med. 10, 167 (2012)PubMedCentralPubMed
25.
go back to reference A. Giustina, G. Mazziotti, E. Canalis, Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 29, 535–559 (2008)PubMed A. Giustina, G. Mazziotti, E. Canalis, Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 29, 535–559 (2008)PubMed
26.
27.
go back to reference S. Perrini, L. Laviola, M.C. Carreira, A. Cignarelli, A. Natalicchio, F. Giorgino, The GH/IGF1 axis and signalling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J. Endocrinol. 205, 201–210 (2010)PubMed S. Perrini, L. Laviola, M.C. Carreira, A. Cignarelli, A. Natalicchio, F. Giorgino, The GH/IGF1 axis and signalling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J. Endocrinol. 205, 201–210 (2010)PubMed
28.
go back to reference J.K. Park, J.W. Hong, C.O. Kim, S.W. Kim, C.Y. Lim, Y.S. Chung, S.W. Kim, E.J. Lee, Sustained-release recombinant human growth hormone improves body composition and quality of life in adults with somatopause. J. Am. Geriatr. Soc. 59, 944–947 (2011)PubMed J.K. Park, J.W. Hong, C.O. Kim, S.W. Kim, C.Y. Lim, Y.S. Chung, S.W. Kim, E.J. Lee, Sustained-release recombinant human growth hormone improves body composition and quality of life in adults with somatopause. J. Am. Geriatr. Soc. 59, 944–947 (2011)PubMed
29.
go back to reference M.D. Mavalli, D.J. Di Girolamo, Y. Fan, R.C. Riddle, K.S. Campbell, T. van Groen, S.J. Frank, M.A. Sperling, K.A. Esser, M.M. Bamman, T.L. Clemens, Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J. Clin. Invest. 120, 4007–4020 (2010)PubMedCentralPubMed M.D. Mavalli, D.J. Di Girolamo, Y. Fan, R.C. Riddle, K.S. Campbell, T. van Groen, S.J. Frank, M.A. Sperling, K.A. Esser, M.M. Bamman, T.L. Clemens, Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J. Clin. Invest. 120, 4007–4020 (2010)PubMedCentralPubMed
31.
go back to reference M.A. Bredella, P.K. Fazeli, B. Lecka-Czernik, C.J. Rosen, A. Klibanski, IGFBP-2 is a negative predictor of cold-induced brown fat and bone mineral density in young non-obese women. Bone 53, 336–339 (2013)PubMed M.A. Bredella, P.K. Fazeli, B. Lecka-Czernik, C.J. Rosen, A. Klibanski, IGFBP-2 is a negative predictor of cold-induced brown fat and bone mineral density in young non-obese women. Bone 53, 336–339 (2013)PubMed
32.
go back to reference J.N. Farr, N. Charkoudian, J.N. Barnes, D.G. Monroe, L.K. McCready, E.J. Atkinson, S. Amin, L.J. Melton 3rd, M.J. Joyner, S. Khosla, Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J. Clin. Endocrinol. Metab. 97, 4219–4227 (2012)PubMed J.N. Farr, N. Charkoudian, J.N. Barnes, D.G. Monroe, L.K. McCready, E.J. Atkinson, S. Amin, L.J. Melton 3rd, M.J. Joyner, S. Khosla, Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J. Clin. Endocrinol. Metab. 97, 4219–4227 (2012)PubMed
33.
go back to reference P. Boström, J. Wu, M.P. Jedrychowski, A. Korde, L. Ye, J.C. Lo, K.A. Rasbach, E.A. Boström, J.H. Choi, J.Z. Long, S. Kajimura, M.C. Zingaretti, B.F. Vind, H. Tu, S. Cinti, K. Højlund, S.P. Gygi, B.M. Spiegelman, A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012)PubMedCentralPubMed P. Boström, J. Wu, M.P. Jedrychowski, A. Korde, L. Ye, J.C. Lo, K.A. Rasbach, E.A. Boström, J.H. Choi, J.Z. Long, S. Kajimura, M.C. Zingaretti, B.F. Vind, H. Tu, S. Cinti, K. Højlund, S.P. Gygi, B.M. Spiegelman, A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012)PubMedCentralPubMed
34.
go back to reference K. Redlich, J.S. Smolen, Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov 11, 234–250 (2012)PubMed K. Redlich, J.S. Smolen, Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov 11, 234–250 (2012)PubMed
35.
go back to reference D.J. Glass, Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 225–229 (2010)PubMed D.J. Glass, Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 225–229 (2010)PubMed
36.
go back to reference W.S. Lee, W.H. Cheung, L. Qin, N. Tang, K.S. Leung, Age-associated decrease of type IIA/B human skeletal muscle fibers. Clin. Orthop. Relat. Res. 450, 231–237 (2006)PubMed W.S. Lee, W.H. Cheung, L. Qin, N. Tang, K.S. Leung, Age-associated decrease of type IIA/B human skeletal muscle fibers. Clin. Orthop. Relat. Res. 450, 231–237 (2006)PubMed
37.
go back to reference A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.C. Martin, J.P. Michel, Y. Rolland, S.M. Schneider, E. Topinková, M. Vandewoude, M. Zamboni, Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age ageing 39, 412–423 (2010)PubMed A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.C. Martin, J.P. Michel, Y. Rolland, S.M. Schneider, E. Topinková, M. Vandewoude, M. Zamboni, Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age ageing 39, 412–423 (2010)PubMed
38.
go back to reference R.A. Fielding, B. Vellas, W.J. Evans, S. Bhasin, J.E. Morley, A.B. Newman, G. Abellan van Kan, S. Andrieu, J. Bauer, D. Breuille, T. Cederholm, J. Chandler, C. De Meynard, L. Donini, T. Harris, A. Kannt, Keime, F. Guibert, G. Onder, D. Papanicolaou, Y. Rolland, D. Rooks, C. Sieber, E. Souhami, S. Verlaan, M. Zamboni, Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 12, 249–256 (2011)PubMed R.A. Fielding, B. Vellas, W.J. Evans, S. Bhasin, J.E. Morley, A.B. Newman, G. Abellan van Kan, S. Andrieu, J. Bauer, D. Breuille, T. Cederholm, J. Chandler, C. De Meynard, L. Donini, T. Harris, A. Kannt, Keime, F. Guibert, G. Onder, D. Papanicolaou, Y. Rolland, D. Rooks, C. Sieber, E. Souhami, S. Verlaan, M. Zamboni, Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 12, 249–256 (2011)PubMed
40.
go back to reference E. Anliker, M. Toigo, Functional assessment of the muscle-bone unit in the lower leg. J. Musculoskelet. Neuronal Interact. 12, 46–55 (2012)PubMed E. Anliker, M. Toigo, Functional assessment of the muscle-bone unit in the lower leg. J. Musculoskelet. Neuronal Interact. 12, 46–55 (2012)PubMed
41.
go back to reference T. Montalcini, V. Migliaccio, F. Yvelise, S. Rotundo, E. Mazza, A. Liberato, A. Pujia, Reference values for handgrip strength in young people of both sexes. Endocrine 43, 342–345 (2013)PubMed T. Montalcini, V. Migliaccio, F. Yvelise, S. Rotundo, E. Mazza, A. Liberato, A. Pujia, Reference values for handgrip strength in young people of both sexes. Endocrine 43, 342–345 (2013)PubMed
42.
go back to reference H.H. Bolotin, A new perspective on the causal influence of soft tissue composition on DXA-measured in vivo bone mineral density. J. Bone Miner. Res. 13, 1739–1746 (1998)PubMed H.H. Bolotin, A new perspective on the causal influence of soft tissue composition on DXA-measured in vivo bone mineral density. J. Bone Miner. Res. 13, 1739–1746 (1998)PubMed
43.
go back to reference B.S. Zemel, Quantitative computed tomography and computed tomography in children. Curr. Osteoporos. Rep. 9, 284–290 (2011)PubMed B.S. Zemel, Quantitative computed tomography and computed tomography in children. Curr. Osteoporos. Rep. 9, 284–290 (2011)PubMed
44.
go back to reference A.M. Cheung, J.D. Adachi, D.A. Hanley, D.L. Kendler, K.S. Davison, R. Josse, J.P. Brown, L.G. Ste-Marie, R. Kremer, M.C. Erlandson, L. Dian, A.J. Burghardt, S.K. Boyd, High-Resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr. Osteoporos. Rep. 11(2), 136–146 (2013)PubMedCentralPubMed A.M. Cheung, J.D. Adachi, D.A. Hanley, D.L. Kendler, K.S. Davison, R. Josse, J.P. Brown, L.G. Ste-Marie, R. Kremer, M.C. Erlandson, L. Dian, A.J. Burghardt, S.K. Boyd, High-Resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr. Osteoporos. Rep. 11(2), 136–146 (2013)PubMedCentralPubMed
45.
go back to reference E. Schoenau, C.M. Neu, B. Beck, F. Manz, F. Rauch, Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J. Bone Miner. Res. 17, 1095–1101 (2002)PubMed E. Schoenau, C.M. Neu, B. Beck, F. Manz, F. Rauch, Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J. Bone Miner. Res. 17, 1095–1101 (2002)PubMed
46.
go back to reference K.L. Butner, K.W. Creamer, S.M. Nickols-Richardson, S.F. Clark, W.K. Ramp, W.G. Herbert, Fat and muscle indices assessed by pQCT: relationships with physical activity and type 2 diabetes risk. J. Clin. Densitom. 15, 355–361 (2012)PubMed K.L. Butner, K.W. Creamer, S.M. Nickols-Richardson, S.F. Clark, W.K. Ramp, W.G. Herbert, Fat and muscle indices assessed by pQCT: relationships with physical activity and type 2 diabetes risk. J. Clin. Densitom. 15, 355–361 (2012)PubMed
47.
go back to reference S. Coupaud, L.P. Jack, K.J. Hunt, K.J. Hunt, D.B. Allan, Muscle and bone adaptations after treadmill training in incomplete spinal cord injury: a case study using peripheral quantitative computed tomography. J. Musculoskelet. Neuronal Interact. 9, 288–297 (2009)PubMed S. Coupaud, L.P. Jack, K.J. Hunt, K.J. Hunt, D.B. Allan, Muscle and bone adaptations after treadmill training in incomplete spinal cord injury: a case study using peripheral quantitative computed tomography. J. Musculoskelet. Neuronal Interact. 9, 288–297 (2009)PubMed
48.
go back to reference N. Stolzenberg, D.L. Belavy, G. Beller, G. Armbrecht, J. Semler, D. Felsenberg, Bone strength and density via pQCT in post-menopausal osteopenic women after 9 months resistive exercise with whole body vibration or proprioceptive exercise. J. Musculoskelet. Neuronal Interact. 13, 66–76 (2013)PubMed N. Stolzenberg, D.L. Belavy, G. Beller, G. Armbrecht, J. Semler, D. Felsenberg, Bone strength and density via pQCT in post-menopausal osteopenic women after 9 months resistive exercise with whole body vibration or proprioceptive exercise. J. Musculoskelet. Neuronal Interact. 13, 66–76 (2013)PubMed
49.
go back to reference A.A. Sayer, E.M. Dennison, H.E. Syddall, K. Jameson, H.J. Martin, C. Cooper, The developmental origins of sarcopenia: using peripheral quantitative computed tomography to assess muscle size in older people. J. Gerontol. A 63, 835–840 (2008) A.A. Sayer, E.M. Dennison, H.E. Syddall, K. Jameson, H.J. Martin, C. Cooper, The developmental origins of sarcopenia: using peripheral quantitative computed tomography to assess muscle size in older people. J. Gerontol. A 63, 835–840 (2008)
50.
go back to reference J.N. Farr, J.L. Funk, Z. Chen, J.R. Lisse, R.M. Blew, V.R. Lee, M. Laudermilk, T.G. Lohman, S.B. Going, Skeletal muscle fat content is inversely associated with bone strength in young girls. J. Bone Miner. Res. 26, 2217–2225 (2011)PubMed J.N. Farr, J.L. Funk, Z. Chen, J.R. Lisse, R.M. Blew, V.R. Lee, M. Laudermilk, T.G. Lohman, S.B. Going, Skeletal muscle fat content is inversely associated with bone strength in young girls. J. Bone Miner. Res. 26, 2217–2225 (2011)PubMed
51.
go back to reference A.K. Wong, A. Bhargava, K. Beattie, K. Beattie, C.L. Gordon, L. Pickard, C.E. Webber, A. Papaioannou, J. Adachi, J. Adachi, Muscle density, a surrogate of intermuscular adiposity derived from pQCT, is an independent correlate of fractures in women. J. Bone Miner. Res. 26(Suppl 1), 2341–2357 (2011) A.K. Wong, A. Bhargava, K. Beattie, K. Beattie, C.L. Gordon, L. Pickard, C.E. Webber, A. Papaioannou, J. Adachi, J. Adachi, Muscle density, a surrogate of intermuscular adiposity derived from pQCT, is an independent correlate of fractures in women. J. Bone Miner. Res. 26(Suppl 1), 2341–2357 (2011)
52.
go back to reference T. Lang, J.A. Cauley, F. Tylavsky, D. Bauer, S. Cummings, T.B. Harris, Health ABC Study, Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J. Bone Miner. Res. 25, 513–519 (2010)PubMed T. Lang, J.A. Cauley, F. Tylavsky, D. Bauer, S. Cummings, T.B. Harris, Health ABC Study, Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J. Bone Miner. Res. 25, 513–519 (2010)PubMed
53.
go back to reference K. Deere, A. Sayers, H. Viljakainen, D. Lawlor, N. Sattar, J. Kemp, W. Fraser, J. Tobias, Distinct relationships of intramuscular and subcutaneous fat with cortical bone: findings from a cross-sectional study of young adult males and females. J. Clin. Endocrinol. Metab. 98(6), E1041 (2013)PubMed K. Deere, A. Sayers, H. Viljakainen, D. Lawlor, N. Sattar, J. Kemp, W. Fraser, J. Tobias, Distinct relationships of intramuscular and subcutaneous fat with cortical bone: findings from a cross-sectional study of young adult males and females. J. Clin. Endocrinol. Metab. 98(6), E1041 (2013)PubMed
54.
go back to reference J.F. Baker, M. Davis, R. Alexander, B.S. Zemel, S. Mostoufi-Moab, J. Shults, M. Sulik, D.J. Schiferl, M.B. Leonard, Associations between body composition and bone density and structure in men and women across the adult age spectrum. Bone 53, 34–41 (2013)PubMed J.F. Baker, M. Davis, R. Alexander, B.S. Zemel, S. Mostoufi-Moab, J. Shults, M. Sulik, D.J. Schiferl, M.B. Leonard, Associations between body composition and bone density and structure in men and women across the adult age spectrum. Bone 53, 34–41 (2013)PubMed
55.
go back to reference J.L. Ferretti, R.F. Capozza, G.R. Cointry, S.L. García, H. Plotkin, M.L. Alvarez Filgueira, J.R. Zanchetta, Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22, 683–690 (1998)PubMed J.L. Ferretti, R.F. Capozza, G.R. Cointry, S.L. García, H. Plotkin, M.L. Alvarez Filgueira, J.R. Zanchetta, Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22, 683–690 (1998)PubMed
56.
go back to reference H. Zhang, X. Chai, S. Li, Z. Zhang, L. Yuan, H. Xie, H. Zhou, X. Wu, Z. Sheng, E. Liao, Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women. Endocrine 43, 643–650 (2013)PubMed H. Zhang, X. Chai, S. Li, Z. Zhang, L. Yuan, H. Xie, H. Zhou, X. Wu, Z. Sheng, E. Liao, Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women. Endocrine 43, 643–650 (2013)PubMed
57.
go back to reference N.K. Lebrasseur, S.J. Achenbach, L.J. Melton 3rd, S. Amin, S. Khosla, Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J. Bone Miner. Res. 27, 2159–2169 (2012)PubMedCentralPubMed N.K. Lebrasseur, S.J. Achenbach, L.J. Melton 3rd, S. Amin, S. Khosla, Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J. Bone Miner. Res. 27, 2159–2169 (2012)PubMedCentralPubMed
58.
go back to reference H.M. Frost, Muscle strength, bone mass, and age-related bone loss. J. Bone Miner. Res. 12, 1547–1551 (1997) H.M. Frost, Muscle strength, bone mass, and age-related bone loss. J. Bone Miner. Res. 12, 1547–1551 (1997)
59.
go back to reference E. Schoenau, From mechanostat theory to development of the “functional muscle-bone-unit”. J. Musculoskelet. Neuronal Interact. 5, 232–238 (2005)PubMed E. Schoenau, From mechanostat theory to development of the “functional muscle-bone-unit”. J. Musculoskelet. Neuronal Interact. 5, 232–238 (2005)PubMed
60.
go back to reference L.F. Bonewald, The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011)PubMed L.F. Bonewald, The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011)PubMed
61.
go back to reference C. Rubin, A.S. Turner, S. Bain, C. Mallinckrodt, K. McLeod, Anabolism: low mechanical signals strengthen long bones. Nature 412, 603–604 (2001)PubMed C. Rubin, A.S. Turner, S. Bain, C. Mallinckrodt, K. McLeod, Anabolism: low mechanical signals strengthen long bones. Nature 412, 603–604 (2001)PubMed
62.
go back to reference F. Rauch, D.A. Bailey, A. Baxter-Jones, R. Mirwald, R. Faulkner, The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 34, 771–775 (2004)PubMed F. Rauch, D.A. Bailey, A. Baxter-Jones, R. Mirwald, R. Faulkner, The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 34, 771–775 (2004)PubMed
63.
go back to reference O. Fricke, R. Beccard, O. Semler, E. Schoenau, Analyses of muscular mass and function: the impact on bone mineral density and peak muscle mass. Pediatr. Nephrol. 25, 2393–2400 (2010)PubMed O. Fricke, R. Beccard, O. Semler, E. Schoenau, Analyses of muscular mass and function: the impact on bone mineral density and peak muscle mass. Pediatr. Nephrol. 25, 2393–2400 (2010)PubMed
64.
go back to reference L. Xu, Q. Wang, Q. Wang, A. Lyytikäinen, T. Mikkola, E. Völgyi, S. Cheng, P. Wiklund, E. Munukka, P. Nicholson, M. Alén, S. Cheng, Concerted actions of insulin-like growth factor 1, testosterone, and estradiol on peripubertal bone growth: a 7-year longitudinal study. J. Bone Miner. Res. 26, 2204–2211 (2011)PubMed L. Xu, Q. Wang, Q. Wang, A. Lyytikäinen, T. Mikkola, E. Völgyi, S. Cheng, P. Wiklund, E. Munukka, P. Nicholson, M. Alén, S. Cheng, Concerted actions of insulin-like growth factor 1, testosterone, and estradiol on peripubertal bone growth: a 7-year longitudinal study. J. Bone Miner. Res. 26, 2204–2211 (2011)PubMed
65.
go back to reference G.L. Klein, L.A. Fitzpatrick, C.B. Langman, T.J. Beck, T.O. Carpenter, V. Gilsanz, I.A. Holm, M.B. Leonard, B.L. Specker, ASBMR Group, The state of pediatric bone: summary of the ASBMR pediatric bone initiative. J. Bone Miner. Res. 20, 2075–2081 (2005)PubMed G.L. Klein, L.A. Fitzpatrick, C.B. Langman, T.J. Beck, T.O. Carpenter, V. Gilsanz, I.A. Holm, M.B. Leonard, B.L. Specker, ASBMR Group, The state of pediatric bone: summary of the ASBMR pediatric bone initiative. J. Bone Miner. Res. 20, 2075–2081 (2005)PubMed
66.
go back to reference M.B. Leonard, A. Elmi, S. Mostoufi-Moab, J. Shults, J.M. Burnham, M. Thayu, L. Kibe, R.J. Wetzsteon, B.S. Zemel, Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J. Clin. Endocrinol. Metab. 95, 1681–1689 (2010)PubMed M.B. Leonard, A. Elmi, S. Mostoufi-Moab, J. Shults, J.M. Burnham, M. Thayu, L. Kibe, R.J. Wetzsteon, B.S. Zemel, Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J. Clin. Endocrinol. Metab. 95, 1681–1689 (2010)PubMed
67.
go back to reference J.M. Burnham, J. Shults, H. Sembhi, B.S. Zemel, M.B. Leonard, The dysfunctional muscle-bone unit in juvenile idiopathic arthritis. J. Musculoskelet. Neuronal Interact. 6, 351–352 (2006)PubMed J.M. Burnham, J. Shults, H. Sembhi, B.S. Zemel, M.B. Leonard, The dysfunctional muscle-bone unit in juvenile idiopathic arthritis. J. Musculoskelet. Neuronal Interact. 6, 351–352 (2006)PubMed
68.
go back to reference A. Tsampalieros, P. Gupta, M.R. Denburg, J. Shults, B.S. Zemel, S. Mostoufi-Moab, R.J. Wetzsteon, R.M. Herskovitz, K.M. Whitehead, M.B. Leonard, Glucocorticoid effects on changes in bone mineral density and cortical structure in childhood nephrotic syndrome. J. Bone Miner. Res. 28, 480–488 (2013)PubMed A. Tsampalieros, P. Gupta, M.R. Denburg, J. Shults, B.S. Zemel, S. Mostoufi-Moab, R.J. Wetzsteon, R.M. Herskovitz, K.M. Whitehead, M.B. Leonard, Glucocorticoid effects on changes in bone mineral density and cortical structure in childhood nephrotic syndrome. J. Bone Miner. Res. 28, 480–488 (2013)PubMed
69.
go back to reference A. LeBlanc, R. Rowe, V. Schneider, H. Evans, T. Hedrick, Regional muscle loss after short duration spaceflight. Aviat. Space Environ. Med. 66, 1151–1154 (1995)PubMed A. LeBlanc, R. Rowe, V. Schneider, H. Evans, T. Hedrick, Regional muscle loss after short duration spaceflight. Aviat. Space Environ. Med. 66, 1151–1154 (1995)PubMed
70.
go back to reference T. Trappe, Influence of aging and long-term unloading on the structure and function of human skeletal muscle. Appl. Physiol. Nutr. Metab. 34, 459–464 (2009)PubMedCentralPubMed T. Trappe, Influence of aging and long-term unloading on the structure and function of human skeletal muscle. Appl. Physiol. Nutr. Metab. 34, 459–464 (2009)PubMedCentralPubMed
71.
go back to reference M.L. Bianchi, A. Mazzanti, E. Galbiati, S. Saraifoger, A. Dubini, F. Cornelio, L. Morandi, Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos. Int. 14, 761–767 (2003)PubMed M.L. Bianchi, A. Mazzanti, E. Galbiati, S. Saraifoger, A. Dubini, F. Cornelio, L. Morandi, Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos. Int. 14, 761–767 (2003)PubMed
72.
go back to reference Y. Shirazi-Fard, J.S. Kupke, S.A. Bloomfield, H.A. Hogan, Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone 52, 433–443 (2013)PubMed Y. Shirazi-Fard, J.S. Kupke, S.A. Bloomfield, H.A. Hogan, Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone 52, 433–443 (2013)PubMed
73.
go back to reference P. Szulc, S. Boutroy, S. Boutroy, N. Vilayphiou, M. Schoppet, M. Rauner, R. Chapurlat, C. Hamann, L.C. Hofbauer, Correlates of bone microarchitectural parameters and serum sclerostin levels in men: the STRAMBO study. J. Bone Miner. Res. 28(8), 1760–1770 (2013)PubMed P. Szulc, S. Boutroy, S. Boutroy, N. Vilayphiou, M. Schoppet, M. Rauner, R. Chapurlat, C. Hamann, L.C. Hofbauer, Correlates of bone microarchitectural parameters and serum sclerostin levels in men: the STRAMBO study. J. Bone Miner. Res. 28(8), 1760–1770 (2013)PubMed
74.
go back to reference P. Szulc, S. Blaizot, S. Boutroy, N. Vilayphiou, S. Boonen, R. Chapurlat, Impaired bone microarchitecture at the distal radius in older men with low muscle mass and grip strength: the STRAMBO study. J. Bone Miner. Res. 28, 169–178 (2013)PubMed P. Szulc, S. Blaizot, S. Boutroy, N. Vilayphiou, S. Boonen, R. Chapurlat, Impaired bone microarchitecture at the distal radius in older men with low muscle mass and grip strength: the STRAMBO study. J. Bone Miner. Res. 28, 169–178 (2013)PubMed
75.
go back to reference A. Sharir, T. Stern, C. Rot, R. Shahar, E. Zelzer, Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development 138, 3247–3259 (2011)PubMed A. Sharir, T. Stern, C. Rot, R. Shahar, E. Zelzer, Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development 138, 3247–3259 (2011)PubMed
76.
go back to reference N.C. Nowlan, J. Sharpe, K.A. Roddy, P.J. Prendergast, P. Murphy, Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res. C 90, 203–213 (2010) N.C. Nowlan, J. Sharpe, K.A. Roddy, P.J. Prendergast, P. Murphy, Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res. C 90, 203–213 (2010)
77.
go back to reference J. Kahn, Y. Shwartz, E. Blitz, S. Krief, A. Sharir, D.A. Breitel, R. Rattenbach, F. Relaix, P. Maire, R.B. Rountree, D.M. Kingsley, E. Zelzer, Muscle contraction is necessary to maintain joint progenitor cell fate. Dev. Cell 16, 734–743 (2009)PubMed J. Kahn, Y. Shwartz, E. Blitz, S. Krief, A. Sharir, D.A. Breitel, R. Rattenbach, F. Relaix, P. Maire, R.B. Rountree, D.M. Kingsley, E. Zelzer, Muscle contraction is necessary to maintain joint progenitor cell fate. Dev. Cell 16, 734–743 (2009)PubMed
78.
go back to reference J.G. Hall, Analysis of Pena Shokeir phenotype. Am. J. Med. Genet. 25, 99–117 (1986)PubMed J.G. Hall, Analysis of Pena Shokeir phenotype. Am. J. Med. Genet. 25, 99–117 (1986)PubMed
79.
go back to reference P. Juffer, R.T. Jaspers, P. Lips, A.D. Bakker, J. Klein-Nulend, Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am. J. Physiol. Endocrinol. Metab. 302, E389–E395 (2012)PubMed P. Juffer, R.T. Jaspers, P. Lips, A.D. Bakker, J. Klein-Nulend, Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am. J. Physiol. Endocrinol. Metab. 302, E389–E395 (2012)PubMed
80.
go back to reference N.C. Nowlan, C. Bourdon, G. Dumas, S. Tajbakhsh, P.J. Prendergast, P. Murphy, Developing bones are differentially affected by compromised skeletal muscle formation. Bone 46, 1275–1285 (2010)PubMedCentralPubMed N.C. Nowlan, C. Bourdon, G. Dumas, S. Tajbakhsh, P.J. Prendergast, P. Murphy, Developing bones are differentially affected by compromised skeletal muscle formation. Bone 46, 1275–1285 (2010)PubMedCentralPubMed
81.
go back to reference N.C. Nowlan, G. Dumas, S. Tajbakhsh, P.J. Prendergast, P. Murphy, Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. Biomech. Model. Mechanobiol. 11, 207–219 (2012)PubMed N.C. Nowlan, G. Dumas, S. Tajbakhsh, P.J. Prendergast, P. Murphy, Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. Biomech. Model. Mechanobiol. 11, 207–219 (2012)PubMed
82.
go back to reference S.E. Warner, D.A. Sanford, B.A. Becker, S.D. Bain, S. Srinivasan, T.S. Gross, Botox induced muscle paralysis rapidly degrades bone. Bone 38, 257–264 (2006)PubMedCentralPubMed S.E. Warner, D.A. Sanford, B.A. Becker, S.D. Bain, S. Srinivasan, T.S. Gross, Botox induced muscle paralysis rapidly degrades bone. Bone 38, 257–264 (2006)PubMedCentralPubMed
83.
go back to reference D. Joulia-Ekaza, G. Cabello, The myostatin gene: physiology and pharmacological relevance. Curr. Opin. Pharmacol. 7, 310–315 (2007)PubMed D. Joulia-Ekaza, G. Cabello, The myostatin gene: physiology and pharmacological relevance. Curr. Opin. Pharmacol. 7, 310–315 (2007)PubMed
84.
go back to reference A.C. McPherron, A.M. Lawler, S.J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83–90 (1997)PubMed A.C. McPherron, A.M. Lawler, S.J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83–90 (1997)PubMed
85.
go back to reference A.C. McPherron, S.J. Lee, Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94, 12457–12461 (1997)PubMed A.C. McPherron, S.J. Lee, Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94, 12457–12461 (1997)PubMed
86.
go back to reference M. Schuelke, K.R. Wagner, L.E. Stolz, C. Hübner, T. Riebel, W. Kömen, T. Braun, J.F. Tobin, S.J. Lee, Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682–2688 (2004)PubMed M. Schuelke, K.R. Wagner, L.E. Stolz, C. Hübner, T. Riebel, W. Kömen, T. Braun, J.F. Tobin, S.J. Lee, Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682–2688 (2004)PubMed
87.
go back to reference T.A. Zimmers, M.V. Davies, L.G. Koniaris, P. Haynes, A.F. Esquela, K.N. Tomkinson, A.C. McPherron, N.M. Wolfman, S.J. Lee, Induction of cachexia in mice by systemically administered myostatin. Science 296, 1486–1488 (2002)PubMed T.A. Zimmers, M.V. Davies, L.G. Koniaris, P. Haynes, A.F. Esquela, K.N. Tomkinson, A.C. McPherron, N.M. Wolfman, S.J. Lee, Induction of cachexia in mice by systemically administered myostatin. Science 296, 1486–1488 (2002)PubMed
88.
go back to reference S. Reisz-Porszasz, S. Bhasin, J.N. Artaza, R. Shen, I. Sinha-Hikim, A. Hogue, T.J. Fielder, N.F. Gonzalez-Cadavid, Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am. J. Physiol. Endocrinol. Metab. 285, E876–E888 (2003)PubMed S. Reisz-Porszasz, S. Bhasin, J.N. Artaza, R. Shen, I. Sinha-Hikim, A. Hogue, T.J. Fielder, N.F. Gonzalez-Cadavid, Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am. J. Physiol. Endocrinol. Metab. 285, E876–E888 (2003)PubMed
89.
go back to reference M.W. Hamrick, A.C. McPherron, C.O. Lovejoy, Bone mineral content and density in the humerus of myostatin-deficient mice. Calcif. Tissue Int. 71, 63–68 (2002)PubMed M.W. Hamrick, A.C. McPherron, C.O. Lovejoy, Bone mineral content and density in the humerus of myostatin-deficient mice. Calcif. Tissue Int. 71, 63–68 (2002)PubMed
90.
go back to reference M.W. Hamrick, Increased bone mineral density in the femora of GDF8 knockout mice. Anat. Rec. 272, 388–391 (2003) M.W. Hamrick, Increased bone mineral density in the femora of GDF8 knockout mice. Anat. Rec. 272, 388–391 (2003)
91.
go back to reference E. Montgomery, C. Pennington, M. Hamrick, Muscle-bone interactions in dystrophin-deficient and myostatin-deficient mice. Anat. Rec. 286, 814–822 (2005) E. Montgomery, C. Pennington, M. Hamrick, Muscle-bone interactions in dystrophin-deficient and myostatin-deficient mice. Anat. Rec. 286, 814–822 (2005)
92.
go back to reference M.N. Elkasrawy, M.W. Hamrick, Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J. Musculoskelet. Neuronal Interact. 10, 56–63 (2010)PubMedCentralPubMed M.N. Elkasrawy, M.W. Hamrick, Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J. Musculoskelet. Neuronal Interact. 10, 56–63 (2010)PubMedCentralPubMed
93.
go back to reference M.R. Morissette, J.C. Stricker, M.A. Rosenberg, C. Buranasombati, E.B. Levitan, M.A. Mittleman, A. Rosenzweig, Effects of myostatin deletion in aging mice. Aging Cell 8, 573–583 (2009)PubMedCentralPubMed M.R. Morissette, J.C. Stricker, M.A. Rosenberg, C. Buranasombati, E.B. Levitan, M.A. Mittleman, A. Rosenzweig, Effects of myostatin deletion in aging mice. Aging Cell 8, 573–583 (2009)PubMedCentralPubMed
94.
go back to reference M.W. Hamrick, T. Samaddar, C. Pennington, J. McCormick, Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J. Bone Miner. Res. 21, 477–483 (2006)PubMed M.W. Hamrick, T. Samaddar, C. Pennington, J. McCormick, Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J. Bone Miner. Res. 21, 477–483 (2006)PubMed
95.
go back to reference M.W. Hamrick, X. Shi, W. Zhang, C. Pennington, H. Thakore, M. Haque, B. Kang, C.M. Isales, S. Fulzele, K.H. Wenger, Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone 40, 1544–1553 (2007)PubMedCentralPubMed M.W. Hamrick, X. Shi, W. Zhang, C. Pennington, H. Thakore, M. Haque, B. Kang, C.M. Isales, S. Fulzele, K.H. Wenger, Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone 40, 1544–1553 (2007)PubMedCentralPubMed
96.
go back to reference T. Guo, W. Jou, T. Chanturiya, J. Portas, O. Gavrilova, A.C. McPherron, Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS One 4, e4937 (2009)PubMedCentralPubMed T. Guo, W. Jou, T. Chanturiya, J. Portas, O. Gavrilova, A.C. McPherron, Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS One 4, e4937 (2009)PubMedCentralPubMed
97.
go back to reference C. Zhang, C. McFarlane, S. Lokireddy, S. Masuda, X. Ge, P.D. Gluckman, M. Sharma, R. Kambadur, Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia 55, 183–193 (2012)PubMed C. Zhang, C. McFarlane, S. Lokireddy, S. Masuda, X. Ge, P.D. Gluckman, M. Sharma, R. Kambadur, Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia 55, 183–193 (2012)PubMed
98.
go back to reference M. Elkasrawy, D. Immel, X. Wen, X. Liu, L.F. Liang, M.W. Hamrick, Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing. J. Histochem. Cytochem. 60, 22–30 (2012)PubMed M. Elkasrawy, D. Immel, X. Wen, X. Liu, L.F. Liang, M.W. Hamrick, Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing. J. Histochem. Cytochem. 60, 22–30 (2012)PubMed
99.
go back to reference S. Lokireddy, I.W. Wijesoma, S. Bonala, M. Wei, S.K. Sze, C. McFarlane, R. Kambadur, M. Sharma, Myostatin is a novel tumoral factor that induces cancer cachexia. Biochem. J. 446, 23–36 (2012)PubMedCentralPubMed S. Lokireddy, I.W. Wijesoma, S. Bonala, M. Wei, S.K. Sze, C. McFarlane, R. Kambadur, M. Sharma, Myostatin is a novel tumoral factor that induces cancer cachexia. Biochem. J. 446, 23–36 (2012)PubMedCentralPubMed
100.
go back to reference Z.L. Zhang, J.W. He, Y.J. Qin, Y.Q. Hu, M. Li, H. Zhang, W.W. Hu, Y.J. Liu, J.M. Gu, Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos. Int. 19, 39–47 (2008)PubMed Z.L. Zhang, J.W. He, Y.J. Qin, Y.Q. Hu, M. Li, H. Zhang, W.W. Hu, Y.J. Liu, J.M. Gu, Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos. Int. 19, 39–47 (2008)PubMed
101.
go back to reference K.M. Lakshman, S. Bhasin, C. Corcoran, L.A. Collins-Racie, L. Tchistiakova, S.B. Forlow, K. St Ledger, M.E. Burczynski, A.J. Dorner, E.R. Lavallie, Measurement of myostatin concentrations in human serum: circulating concentrations in young and older men and effects of testosterone administration. Mol. Cell. Endocrinol. 302, 26–32 (2009)PubMed K.M. Lakshman, S. Bhasin, C. Corcoran, L.A. Collins-Racie, L. Tchistiakova, S.B. Forlow, K. St Ledger, M.E. Burczynski, A.J. Dorner, E.R. Lavallie, Measurement of myostatin concentrations in human serum: circulating concentrations in young and older men and effects of testosterone administration. Mol. Cell. Endocrinol. 302, 26–32 (2009)PubMed
102.
go back to reference P. Szulc, M. Schoppet, C. Goettsch, M. Rauner, T. Dschietzig, R. Chapurlat, L.C. Hofbauer, Endocrine and clinical correlates of myostatin serum concentration in men–the STRAMBO study. J. Clin. Endocrinol. Metab. 97, 3700–3708 (2012)PubMed P. Szulc, M. Schoppet, C. Goettsch, M. Rauner, T. Dschietzig, R. Chapurlat, L.C. Hofbauer, Endocrine and clinical correlates of myostatin serum concentration in men–the STRAMBO study. J. Clin. Endocrinol. Metab. 97, 3700–3708 (2012)PubMed
104.
go back to reference R.A. Brekken, E.H. Sage, SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol. 19, 816–827 (2001)PubMed R.A. Brekken, E.H. Sage, SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol. 19, 816–827 (2001)PubMed
105.
go back to reference L.H. Jorgensen, S.J. Petersson, J. Sellathurai, D.C. Andersen, S. Thayssen, D.J. Sant, C.H. Jensen, H.D. Schrøder, Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J. Histochem. Cytochem. 57, 29–39 (2009)PubMed L.H. Jorgensen, S.J. Petersson, J. Sellathurai, D.C. Andersen, S. Thayssen, D.J. Sant, C.H. Jensen, H.D. Schrøder, Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J. Histochem. Cytochem. 57, 29–39 (2009)PubMed
106.
go back to reference B.R. Barnes, E.R. Szelenyi, G.L. Warren, M.L. Urso, Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 in responses to traumatic skeletal muscle injury. Am. J. Physiol. Cell Physiol. 297, C1501–C1508 (2009)PubMed B.R. Barnes, E.R. Szelenyi, G.L. Warren, M.L. Urso, Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 in responses to traumatic skeletal muscle injury. Am. J. Physiol. Cell Physiol. 297, C1501–C1508 (2009)PubMed
107.
go back to reference L.S. Quinn, B.G. Anderson, L. Strait-Bodey, A. Stroud, J. Argiles, Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am. J. Physiol. Endocrinol. Metab. 296, E191–E202 (2009)PubMed L.S. Quinn, B.G. Anderson, L. Strait-Bodey, A. Stroud, J. Argiles, Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am. J. Physiol. Endocrinol. Metab. 296, E191–E202 (2009)PubMed
108.
go back to reference B.K. Pedersen, F. Edward, Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J. Appl. Physiol. 107, 1006–1014 (2009)PubMed B.K. Pedersen, F. Edward, Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J. Appl. Physiol. 107, 1006–1014 (2009)PubMed
109.
go back to reference M.N. Weitzmann, C. Roggia, G. Toraldo, L. Weitzmann, R. Pacifici, Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J. Clin. Invest. 110, 1643–1650 (2002)PubMedCentralPubMed M.N. Weitzmann, C. Roggia, G. Toraldo, L. Weitzmann, R. Pacifici, Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J. Clin. Invest. 110, 1643–1650 (2002)PubMedCentralPubMed
110.
go back to reference W.M. Jackson, A.B. Aragon, J. Onodera, S.M. Koehler, Y. Ji, J.D. Bulken-Hoover, J.A. Vogler, R.S. Tuan, L.J. Nesti, Cytokine expression in muscle following traumatic injury. J. Orthop. Res. 29, 1613–1620 (2011)PubMedCentralPubMed W.M. Jackson, A.B. Aragon, J. Onodera, S.M. Koehler, Y. Ji, J.D. Bulken-Hoover, J.A. Vogler, R.S. Tuan, L.J. Nesti, Cytokine expression in muscle following traumatic injury. J. Orthop. Res. 29, 1613–1620 (2011)PubMedCentralPubMed
111.
go back to reference K. Tanaka, E. Matsumoto, Y. Higashimaki, T. Katagiri, T. Sugimoto, S. Seino, H. Kaji, Role of osteoglycin in the linkage between muscle and bone. J. Biol. Chem. 287, 11616–11628 (2012)PubMed K. Tanaka, E. Matsumoto, Y. Higashimaki, T. Katagiri, T. Sugimoto, S. Seino, H. Kaji, Role of osteoglycin in the linkage between muscle and bone. J. Biol. Chem. 287, 11616–11628 (2012)PubMed
112.
go back to reference K. Tanaka, E. Matsumoto, Y. Higashimaki, T. Sugimoto, S. Seino, H. Kaji, FAM5C is a soluble osteoblast differentiation factor linking muscle to bone. Biochem. Biophys. Res. Commun. 418, 134–139 (2012)PubMed K. Tanaka, E. Matsumoto, Y. Higashimaki, T. Sugimoto, S. Seino, H. Kaji, FAM5C is a soluble osteoblast differentiation factor linking muscle to bone. Biochem. Biophys. Res. Commun. 418, 134–139 (2012)PubMed
113.
go back to reference M.W. Hamrick, P.L. McNeil, S.L. Patterson, Role of muscle-derived growth factors in bone formation. J. Musculoskelet. Neuronal Interact. 10, 64–70 (2010)PubMedCentralPubMed M.W. Hamrick, P.L. McNeil, S.L. Patterson, Role of muscle-derived growth factors in bone formation. J. Musculoskelet. Neuronal Interact. 10, 64–70 (2010)PubMedCentralPubMed
114.
go back to reference K. Jähn, N. Lara-Castillo, L. Brotto, C.L. Mo, M.L. Johnson, M. Brotto, L.F. Bonewald, Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin. Eur. Cell Mater. 24, 197–209 (2012). Discussion 209–210PubMedCentralPubMed K. Jähn, N. Lara-Castillo, L. Brotto, C.L. Mo, M.L. Johnson, M. Brotto, L.F. Bonewald, Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin. Eur. Cell Mater. 24, 197–209 (2012). Discussion 209–210PubMedCentralPubMed
116.
go back to reference C. Mo, S. Romero-Suarez, L. Bonewald, M. Johnson, M. Brotto, Prostaglandin e2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent Pat. Biotechnol. 6, 223–229 (2012)PubMedCentralPubMed C. Mo, S. Romero-Suarez, L. Bonewald, M. Johnson, M. Brotto, Prostaglandin e2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent Pat. Biotechnol. 6, 223–229 (2012)PubMedCentralPubMed
118.
go back to reference S.I. Zacks, M.F. Sheff, Periosteal and metaplastic bone formation in mouse minced muscle regeneration. Lab. Invest. 46, 405–412 (1982)PubMed S.I. Zacks, M.F. Sheff, Periosteal and metaplastic bone formation in mouse minced muscle regeneration. Lab. Invest. 46, 405–412 (1982)PubMed
119.
go back to reference P.S. Landry, A. Marino, K. Sadasivan, A. Albright, Effect of soft-tissue trauma on the early periosteal response of bone to injury. J. Trauma 48, 479–483 (2000)PubMed P.S. Landry, A. Marino, K. Sadasivan, A. Albright, Effect of soft-tissue trauma on the early periosteal response of bone to injury. J. Trauma 48, 479–483 (2000)PubMed
120.
go back to reference S.E. Utvag, K.B. Iversen, O. Grundnes, O. Reikeras, Poor muscle coverage delays fracture healing in rats. Acta Orthop Scand. 73, 471–474 (2002)PubMed S.E. Utvag, K.B. Iversen, O. Grundnes, O. Reikeras, Poor muscle coverage delays fracture healing in rats. Acta Orthop Scand. 73, 471–474 (2002)PubMed
121.
go back to reference H. Stein, S.M. Perren, J. Cordey, J. Kenwright, R. Mosheiff, M.J. Francis, The muscle bed–a crucial factor for fracture healing: a physiological concept. Orthopedics 25, 1379–1383 (2002)PubMed H. Stein, S.M. Perren, J. Cordey, J. Kenwright, R. Mosheiff, M.J. Francis, The muscle bed–a crucial factor for fracture healing: a physiological concept. Orthopedics 25, 1379–1383 (2002)PubMed
122.
go back to reference M.M. Reverte, R. Dimitriou, N.K. Kanakaris, P.V. Giannoudis, What is the effect of compartment syndrome and fasciotomies on fracture healing in tibial fractures? Injury 42, 1402–1407 (2011)PubMed M.M. Reverte, R. Dimitriou, N.K. Kanakaris, P.V. Giannoudis, What is the effect of compartment syndrome and fasciotomies on fracture healing in tibial fractures? Injury 42, 1402–1407 (2011)PubMed
123.
go back to reference L.E. Harry, A. Sandison, E.M. Paleolog, U. Hansen, M.F. Pearse, J. Nanchahal, Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J. Orthop. Res. 26, 1238–1244 (2008)PubMed L.E. Harry, A. Sandison, E.M. Paleolog, U. Hansen, M.F. Pearse, J. Nanchahal, Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J. Orthop. Res. 26, 1238–1244 (2008)PubMed
124.
go back to reference S. Gopal, S. Majumder, A.G. Batchelor, S.L. Knight, S.L. Knight, P. De Boer, R.M. Smith, Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J. Bone Joint Surg. Br. 82, 959–966 (2000)PubMed S. Gopal, S. Majumder, A.G. Batchelor, S.L. Knight, S.L. Knight, P. De Boer, R.M. Smith, Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J. Bone Joint Surg. Br. 82, 959–966 (2000)PubMed
125.
go back to reference A. Schindeler, R. Liu, D.G. Little, The contribution of different cell lineages to bone repair: exploring a role for muscle stem cells. Differentiation 77, 12–18 (2009)PubMed A. Schindeler, R. Liu, D.G. Little, The contribution of different cell lineages to bone repair: exploring a role for muscle stem cells. Differentiation 77, 12–18 (2009)PubMed
126.
go back to reference R. Liu, A. Schindeler, D.G. Little, The potential role of muscle in bone repair. J. Musculoskelet. Neuronal Interact. 10, 71–76 (2010)PubMed R. Liu, A. Schindeler, D.G. Little, The potential role of muscle in bone repair. J. Musculoskelet. Neuronal Interact. 10, 71–76 (2010)PubMed
127.
go back to reference G.E. Glass, J.K. Chan, A. Freidin, M. Feldmann, N.J. Horwood, J. Nanchahal, TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc. Natl. Acad. Sci. U S A 108, 1585–1590 (2011)PubMedCentralPubMed G.E. Glass, J.K. Chan, A. Freidin, M. Feldmann, N.J. Horwood, J. Nanchahal, TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc. Natl. Acad. Sci. U S A 108, 1585–1590 (2011)PubMedCentralPubMed
128.
go back to reference D.M. Cairns, P. Lee, T. Uchimura, C.R. Seufert, H. Kwon, L. Zeng, The role of muscle cells in regulating cartilage matrix production. J. Orthop. Res. 28, 529–536 (2010)PubMedCentralPubMed D.M. Cairns, P. Lee, T. Uchimura, C.R. Seufert, H. Kwon, L. Zeng, The role of muscle cells in regulating cartilage matrix production. J. Orthop. Res. 28, 529–536 (2010)PubMedCentralPubMed
129.
go back to reference G. Duda, W. Taylor, T. Winkler, G. Matziolis, M. Heller, N. Haas, C. Perka, K.D. Schaser, Biomechanical, microvascular, and cellular factors promote muscle and bone re generation. Exerc. Sports Sci. Rev. 36, 64–70 (2008) G. Duda, W. Taylor, T. Winkler, G. Matziolis, M. Heller, N. Haas, C. Perka, K.D. Schaser, Biomechanical, microvascular, and cellular factors promote muscle and bone re generation. Exerc. Sports Sci. Rev. 36, 64–70 (2008)
130.
go back to reference Y. Hao, Y. Ma, X. Wang, F. Jin, S. Ge, Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur. J. Orthop. Res. 30, 574–580 (2012)PubMed Y. Hao, Y. Ma, X. Wang, F. Jin, S. Ge, Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur. J. Orthop. Res. 30, 574–580 (2012)PubMed
131.
go back to reference E. Kellum, H. Starr, P. Arounleut, D. Immel, S. Fulzele, K. Wenger, M.W. Hamrick, Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression and callus bone volume. Bone 44, 17–23 (2009)PubMedCentralPubMed E. Kellum, H. Starr, P. Arounleut, D. Immel, S. Fulzele, K. Wenger, M.W. Hamrick, Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression and callus bone volume. Bone 44, 17–23 (2009)PubMedCentralPubMed
132.
go back to reference M.W. Hamrick, P. Arounleut, E. Kellum, M. Cain, D. Immel, L.F. Liang, Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury. J. Trauma 69, 579–583 (2010)PubMedCentralPubMed M.W. Hamrick, P. Arounleut, E. Kellum, M. Cain, D. Immel, L.F. Liang, Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury. J. Trauma 69, 579–583 (2010)PubMedCentralPubMed
133.
go back to reference L.D. Gillespie, M.C. Robertson, W.J. Gillespie, C. Sherrington, S. Gates, L.M. Clemson, S.E. Lamb, Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 9, 007146 (2012) L.D. Gillespie, M.C. Robertson, W.J. Gillespie, C. Sherrington, S. Gates, L.M. Clemson, S.E. Lamb, Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 9, 007146 (2012)
134.
go back to reference A. Mithal, J.P. Bonjour, S. Boonen, P. Burckhardt, H. Degens, G. El Hajj Fuleihan, R. Josse, P. Lips, J. Morales Torres, R. Rizzoli, N. Yoshimura, D.A. Wahl, C. Cooper, B. Dawson-Hughes, IOF CSA Nutrition Working Group, Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 24(5), 1555 (2012)PubMed A. Mithal, J.P. Bonjour, S. Boonen, P. Burckhardt, H. Degens, G. El Hajj Fuleihan, R. Josse, P. Lips, J. Morales Torres, R. Rizzoli, N. Yoshimura, D.A. Wahl, C. Cooper, B. Dawson-Hughes, IOF CSA Nutrition Working Group, Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 24(5), 1555 (2012)PubMed
135.
go back to reference J. Rittweger, Vibration as an exercise modality: how it may work, and what its potential might be. Eur. J. Appl. Physiol. 108, 877–904 (2010)PubMed J. Rittweger, Vibration as an exercise modality: how it may work, and what its potential might be. Eur. J. Appl. Physiol. 108, 877–904 (2010)PubMed
136.
go back to reference J. Rittweger, G. Beller, G. Armbrecht, E. Mulder, B. Buehring, U. Gast, F. Dimeo, H. Schubert, A. de Haan, D.F. Stegeman, H. Schiessl, D. Felsenberg, Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 46, 137–147 (2010)PubMed J. Rittweger, G. Beller, G. Armbrecht, E. Mulder, B. Buehring, U. Gast, F. Dimeo, H. Schubert, A. de Haan, D.F. Stegeman, H. Schiessl, D. Felsenberg, Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 46, 137–147 (2010)PubMed
137.
go back to reference M.E. Chan, G. Uzer, C.T. Rubin, The potential benefits and inherent risks of vibration as a non-drug therapy for the prevention and treatment of osteoporosis. Curr. Osteoporos. Rep. 11, 36–44 (2013)PubMed M.E. Chan, G. Uzer, C.T. Rubin, The potential benefits and inherent risks of vibration as a non-drug therapy for the prevention and treatment of osteoporosis. Curr. Osteoporos. Rep. 11, 36–44 (2013)PubMed
138.
go back to reference M.W. Hamrick, Myostatin (GDF-8) as a Therapeutic Target for the Prevention of Osteoporotic Fractures. IBMS BoneKEy. 7, 8–17 (2010). doi:10.1138/20100423 M.W. Hamrick, Myostatin (GDF-8) as a Therapeutic Target for the Prevention of Osteoporotic Fractures. IBMS BoneKEy. 7, 8–17 (2010). doi:10.​1138/​20100423
139.
go back to reference K. Tsuchida, M. Nakatani, K. Hitachi, A. Uezumi, Y. Sunada, H. Ageta, K. Inokuchi, Activin signaling as an emerging target for therapeutic interventions. Cell. Commun. Signal. 7, 15–19 (2009)PubMedCentralPubMed K. Tsuchida, M. Nakatani, K. Hitachi, A. Uezumi, Y. Sunada, H. Ageta, K. Inokuchi, Activin signaling as an emerging target for therapeutic interventions. Cell. Commun. Signal. 7, 15–19 (2009)PubMedCentralPubMed
140.
go back to reference A.D. Mitchell, R.J. Wall, In vivo evaluation of changes in body composition of transgenic mice expressing the myostatin pro domain using dual energy X-ray absorptiometry. Growth Dev. Aging 70, 25–37 (2007)PubMed A.D. Mitchell, R.J. Wall, In vivo evaluation of changes in body composition of transgenic mice expressing the myostatin pro domain using dual energy X-ray absorptiometry. Growth Dev. Aging 70, 25–37 (2007)PubMed
141.
go back to reference S.J. Lee, L.A. Reed, M.V. Davies, S. Girgenrath, M.E. Goad, K.N. Tomkinson, J.F. Wright, C. Barker, G. Ehrmantraut, J. Holmstrom, B. Trowell, B. Gertz, M.S. Jiang, S.M. Sebald, M. Matzuk, E. Li, L.F. Liang, E. Quattlebaum, R.L. Stotish, N.M. Wolfman, Regulation of muscle growth by multiple ligands signalling through activin type II receptors. Proc. Natl. Acad. Sci. U S A 102, 18117–18122 (2005)PubMedCentralPubMed S.J. Lee, L.A. Reed, M.V. Davies, S. Girgenrath, M.E. Goad, K.N. Tomkinson, J.F. Wright, C. Barker, G. Ehrmantraut, J. Holmstrom, B. Trowell, B. Gertz, M.S. Jiang, S.M. Sebald, M. Matzuk, E. Li, L.F. Liang, E. Quattlebaum, R.L. Stotish, N.M. Wolfman, Regulation of muscle growth by multiple ligands signalling through activin type II receptors. Proc. Natl. Acad. Sci. U S A 102, 18117–18122 (2005)PubMedCentralPubMed
142.
go back to reference S. Bogdanovich, T.O. Krag, E.R. Barton, L.D. Morris, L.A. Whittemore, R.S. Ahima, T.S. Khurana, Functional improvement of dystrophic muscle by myostatin blockade. Nature 420, 418–421 (2002)PubMed S. Bogdanovich, T.O. Krag, E.R. Barton, L.D. Morris, L.A. Whittemore, R.S. Ahima, T.S. Khurana, Functional improvement of dystrophic muscle by myostatin blockade. Nature 420, 418–421 (2002)PubMed
143.
go back to reference K.R. Wagner, J.L. Fleckenstein, A.A. Amato, R.J. Barohn, K. Bushby, D.M. Escolar, K.M. Flanigan, A. Pestronk, R. Tawil, G.I. Wolfe, M. Eagle, J.M. Florence, W.M. King, S. Pandya, V. Straub, P. Juneau, K. Meyers, C. Csimma, T. Araujo, R. Allen, S.A. Parsons, J.M. Wozney, E.R. Lavallie, J.R. Mendell, A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann. Neurol. 63, 561–571 (2008)PubMed K.R. Wagner, J.L. Fleckenstein, A.A. Amato, R.J. Barohn, K. Bushby, D.M. Escolar, K.M. Flanigan, A. Pestronk, R. Tawil, G.I. Wolfe, M. Eagle, J.M. Florence, W.M. King, S. Pandya, V. Straub, P. Juneau, K. Meyers, C. Csimma, T. Araujo, R. Allen, S.A. Parsons, J.M. Wozney, E.R. Lavallie, J.R. Mendell, A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann. Neurol. 63, 561–571 (2008)PubMed
144.
go back to reference N.K. LeBrasseur, T.M. Schelhorn, B.L. Bernardo, P.G. Cosgrove, P.M. Loria, T.A. Brown, Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice. J. Gerontol. A 64, 940–948 (2009) N.K. LeBrasseur, T.M. Schelhorn, B.L. Bernardo, P.G. Cosgrove, P.M. Loria, T.A. Brown, Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice. J. Gerontol. A 64, 940–948 (2009)
145.
go back to reference P. Bialek, J. Parkington, L. Warner, M. St. Andre, L. Jian, D. Gavin, C. Wallace, J. Zhang, G. Yan, A. Root, H. Seeherman, P. Yaworsky, Mice treated with a myostatin/GDF-8 decoy receptor, ActRIIB-Fc, exhibit a tremendous increase in bone mass. Bone 42(Suppl 1), S46 (2008) P. Bialek, J. Parkington, L. Warner, M. St. Andre, L. Jian, D. Gavin, C. Wallace, J. Zhang, G. Yan, A. Root, H. Seeherman, P. Yaworsky, Mice treated with a myostatin/GDF-8 decoy receptor, ActRIIB-Fc, exhibit a tremendous increase in bone mass. Bone 42(Suppl 1), S46 (2008)
146.
go back to reference V. Ferguson, R. Paietta, L. Stodieck, A. Hanson, M. Young, T. Bateman, M. Lemus, P. Kostenuik, E. Jiao, X. Zhou, J. Lu, W. Simonet, D. Lacey, H. Han, Inhibiting myostatin prevents microgravity-associated bone loss in mice. J. Bone Miner. Res. 24(Suppl 1), 1288 (2009) V. Ferguson, R. Paietta, L. Stodieck, A. Hanson, M. Young, T. Bateman, M. Lemus, P. Kostenuik, E. Jiao, X. Zhou, J. Lu, W. Simonet, D. Lacey, H. Han, Inhibiting myostatin prevents microgravity-associated bone loss in mice. J. Bone Miner. Res. 24(Suppl 1), 1288 (2009)
147.
go back to reference K.M. Attie, N.G. Borgstein, Y. Yang, C.H. Condon, D.M. Wilson, A.E. Pearsall, R. Kumar, D.A. Willins, J.S. Seehra, M.L. Sherman, A single ascending-dose study of muscle regulator ace-031 in healthy volunteers. Muscle Nerve 47, 416–423 (2013)PubMed K.M. Attie, N.G. Borgstein, Y. Yang, C.H. Condon, D.M. Wilson, A.E. Pearsall, R. Kumar, D.A. Willins, J.S. Seehra, M.L. Sherman, A single ascending-dose study of muscle regulator ace-031 in healthy volunteers. Muscle Nerve 47, 416–423 (2013)PubMed
148.
go back to reference O. Guardiola, P. Lafuste, S. Brunelli, S. Iaconis, T. Touvier, P. Mourikis, K. De Bock, E. Lonardo, G. Andolfi, A. Bouché, G.L. Liguori, M.M. Shen, S. Tajbakhsh, G. Cossu, P. Carmeliet, G. Minchiotti, Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proc. Natl. Acad. Sci. U S A 109, E3231–E3240 (2012)PubMedCentralPubMed O. Guardiola, P. Lafuste, S. Brunelli, S. Iaconis, T. Touvier, P. Mourikis, K. De Bock, E. Lonardo, G. Andolfi, A. Bouché, G.L. Liguori, M.M. Shen, S. Tajbakhsh, G. Cossu, P. Carmeliet, G. Minchiotti, Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proc. Natl. Acad. Sci. U S A 109, E3231–E3240 (2012)PubMedCentralPubMed
149.
go back to reference H. Yamamoto, E.G. Williams, L. Mouchiroud, C. Cantó, W. Fan, M. Downes, C. Héligon, G.D. Barish, B. Desvergne, R.M. Evans, K. Schoonjans, J. Auwerx, NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827–839 (2011)PubMedCentralPubMed H. Yamamoto, E.G. Williams, L. Mouchiroud, C. Cantó, W. Fan, M. Downes, C. Héligon, G.D. Barish, B. Desvergne, R.M. Evans, K. Schoonjans, J. Auwerx, NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827–839 (2011)PubMedCentralPubMed
Metadata
Title
Muscle–bone interactions: basic and clinical aspects
Authors
Luisella Cianferotti
Maria Luisa Brandi
Publication date
01-03-2014
Publisher
Springer US
Published in
Endocrine / Issue 2/2014
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-013-0026-8

Other articles of this Issue 2/2014

Endocrine 2/2014 Go to the issue