Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Osteonecrosis | Research article

Proper mechanical stress promotes femoral head recovery from steroid-induced osteonecrosis in rats through the OPG/RANK/RANKL system

Authors: Dapeng Fu, Kairong Qin, Sheng Yang, Jianmin Lu, Haoyi Lian, Dewei Zhao

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Long-term use of steroid may lead to osteonecrosis of the femoral head (ONFH). Mechanical stress may help bone formation and remodeling. This study aimed to probe the role of mechanical stress in the femoral head recovery in rats.

Methods

Rat models with ONFH were induced by steroid. Rats were subjected to different levels of mechanical stress (weight-bearing training), and then the morphology and bone density of femoral head of rats were measured. The mRNA and protein levels of the OPG/RANK/RANKL axis in rat femoral head were assessed. Gain- and loss-of function experiments of OPG were performed to identify its role in femoral head recovery following stress implement. The ex vivo cells were extracted and the effects of stress and OPG on osteogenesis in vitro were explored.

Results

Steroid-induced ONFH rats showed decreased bone density and increased bone spaces, as well as necrotic cell colonies and many cavities in the cortical bones and trabeculars. Proper mechanical stress or upregulation of OPG led to decreased RANK/RANKL expression and promoted femoral head recovery from steroid-induced osteonecrosis. However, excessive mechanical stress might impose too much load on the femurs thus leading even retard femoral head recovery process. In addition, the in vitro experimental results supported that proper stress and overexpression of OPG increased the osteogenesis of ex vivo cells of femoral head.

Conclusion

This study provided evidence that proper mechanical stress promoted femoral head recovery from steroid-induced osteonecrosis through the OPG/RANK/RANKL system, while overload might inhibit the recovery process. This study may offer novel insights for ONFH treatment.
Literature
1.
go back to reference Fang S, Li Y, Chen P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head. Drug Des Devel Ther. 2019;13:45–55.PubMedCrossRef Fang S, Li Y, Chen P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head. Drug Des Devel Ther. 2019;13:45–55.PubMedCrossRef
2.
go back to reference Hao C, Yang S, Xu W, Shen JK, Ye S, Liu X, et al. MiR-708 promotes steroid-induced osteonecrosis of femoral head, suppresses osteogenic differentiation by targeting SMAD3. Sci Rep. 2016;6:22599.PubMedPubMedCentralCrossRef Hao C, Yang S, Xu W, Shen JK, Ye S, Liu X, et al. MiR-708 promotes steroid-induced osteonecrosis of femoral head, suppresses osteogenic differentiation by targeting SMAD3. Sci Rep. 2016;6:22599.PubMedPubMedCentralCrossRef
4.
go back to reference Erken HY, Ofluoglu O, Aktas M, Topal C, Yildiz M. Effect of pentoxifylline on histopathological changes in steroid-induced osteonecrosis of femoral head: experimental study in chicken. Int Orthop. 2012;36(7):1523–8.PubMedPubMedCentralCrossRef Erken HY, Ofluoglu O, Aktas M, Topal C, Yildiz M. Effect of pentoxifylline on histopathological changes in steroid-induced osteonecrosis of femoral head: experimental study in chicken. Int Orthop. 2012;36(7):1523–8.PubMedPubMedCentralCrossRef
5.
go back to reference Maruyama M, Nabeshima A, Pan CC, Behn AW, Thio T, Lin T, et al. The effects of a functionally-graded scaffold and bone marrow-derived mononuclear cells on steroid-induced femoral head osteonecrosis. Biomaterials. 2018;187:39–46.PubMedPubMedCentralCrossRef Maruyama M, Nabeshima A, Pan CC, Behn AW, Thio T, Lin T, et al. The effects of a functionally-graded scaffold and bone marrow-derived mononuclear cells on steroid-induced femoral head osteonecrosis. Biomaterials. 2018;187:39–46.PubMedPubMedCentralCrossRef
6.
go back to reference Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: a systematic review of the literature. Gene. 2018;671:103–9.PubMedCrossRef Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: a systematic review of the literature. Gene. 2018;671:103–9.PubMedCrossRef
7.
go back to reference Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS One. 2013;8(4):e62172.PubMedPubMedCentralCrossRef Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS One. 2013;8(4):e62172.PubMedPubMedCentralCrossRef
8.
go back to reference Zhang M, Ishikawa S, Inagawa T, Ikemoto H, Guo S, Sunagawa M, et al. Influence of mechanical force on bone matrix proteins in Ovariectomised mice and osteoblast-like MC3T3-E1 cells. In Vivo. 2017;31(1):87–95.PubMedPubMedCentralCrossRef Zhang M, Ishikawa S, Inagawa T, Ikemoto H, Guo S, Sunagawa M, et al. Influence of mechanical force on bone matrix proteins in Ovariectomised mice and osteoblast-like MC3T3-E1 cells. In Vivo. 2017;31(1):87–95.PubMedPubMedCentralCrossRef
9.
go back to reference Yan YX, Gong YW, Guo Y, Lv Q, Guo C, Zhuang Y, et al. Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation. PLoS One. 2012;7(4):e35709.PubMedPubMedCentralCrossRef Yan YX, Gong YW, Guo Y, Lv Q, Guo C, Zhuang Y, et al. Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation. PLoS One. 2012;7(4):e35709.PubMedPubMedCentralCrossRef
10.
go back to reference Shunzhi Y, Zhonghai L, Ning Y. Mechanical stress affects the osteogenic differentiation of human ligamentum flavum cells via the BMPSmad1 signaling pathway. Mol Med Rep. 2017;16(5):7692–8.PubMedCrossRef Shunzhi Y, Zhonghai L, Ning Y. Mechanical stress affects the osteogenic differentiation of human ligamentum flavum cells via the BMPSmad1 signaling pathway. Mol Med Rep. 2017;16(5):7692–8.PubMedCrossRef
11.
go back to reference Ozcivici E, Judex S. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology. Bone. 2014;67:122–9.PubMedCrossRef Ozcivici E, Judex S. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology. Bone. 2014;67:122–9.PubMedCrossRef
12.
go back to reference Aryaei A, Jayasuriya AC. The effect of oscillatory mechanical stimulation on osteoblast attachment and proliferation. Mater Sci Eng C Mater Biol Appl. 2015;52:129–34.PubMedPubMedCentralCrossRef Aryaei A, Jayasuriya AC. The effect of oscillatory mechanical stimulation on osteoblast attachment and proliferation. Mater Sci Eng C Mater Biol Appl. 2015;52:129–34.PubMedPubMedCentralCrossRef
13.
go back to reference Peng WX, Ye C, Dong WT, Yang LL, Wang CQ, Wei ZA, et al. MicroRNA-34a alleviates steroid-induced avascular necrosis of femoral head by targeting Tgif2 through OPG/RANK/RANKL signaling pathway. Exp Biol Med (Maywood). 2017;242(12):1234–43.CrossRef Peng WX, Ye C, Dong WT, Yang LL, Wang CQ, Wei ZA, et al. MicroRNA-34a alleviates steroid-induced avascular necrosis of femoral head by targeting Tgif2 through OPG/RANK/RANKL signaling pathway. Exp Biol Med (Maywood). 2017;242(12):1234–43.CrossRef
14.
go back to reference Likus W, Siemianowicz K, Markowski J, Wiaderkiewicz J, Kostrzab-Zdebel A, Jura-Szoltys E, et al. Bacterial infections and Osteoclastogenesis regulators in men and women with Cholesteatoma. Arch Immunol Ther Exp. 2016;64(3):241–7.CrossRef Likus W, Siemianowicz K, Markowski J, Wiaderkiewicz J, Kostrzab-Zdebel A, Jura-Szoltys E, et al. Bacterial infections and Osteoclastogenesis regulators in men and women with Cholesteatoma. Arch Immunol Ther Exp. 2016;64(3):241–7.CrossRef
15.
go back to reference Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. Microgravity stress: bone and connective tissue. Compr Physiol. 2016;6(2):645–86.PubMedCrossRef Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. Microgravity stress: bone and connective tissue. Compr Physiol. 2016;6(2):645–86.PubMedCrossRef
16.
go back to reference Zatroch KK, Knight CG, Reimer JN, Pang DS. Refinement of intraperitoneal injection of sodium pentobarbital for euthanasia in laboratory rats (Rattus norvegicus). BMC Vet Res. 2017;13(1):60.PubMedPubMedCentralCrossRef Zatroch KK, Knight CG, Reimer JN, Pang DS. Refinement of intraperitoneal injection of sodium pentobarbital for euthanasia in laboratory rats (Rattus norvegicus). BMC Vet Res. 2017;13(1):60.PubMedPubMedCentralCrossRef
17.
go back to reference Wu Y, Liu H, Shi X, Yao Y, Yang W, Song Y. The long non-coding RNA HNF1A-AS1 regulates proliferation and metastasis in lung adenocarcinoma. Oncotarget. 2015;6(11):9160–72.PubMedPubMedCentralCrossRef Wu Y, Liu H, Shi X, Yao Y, Yang W, Song Y. The long non-coding RNA HNF1A-AS1 regulates proliferation and metastasis in lung adenocarcinoma. Oncotarget. 2015;6(11):9160–72.PubMedPubMedCentralCrossRef
18.
go back to reference Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS One. 2015;10(2):e0118215.PubMedPubMedCentralCrossRef Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS One. 2015;10(2):e0118215.PubMedPubMedCentralCrossRef
19.
go back to reference Kapur S, Baylink DJ, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone. 2003;32(3):241–51.PubMedCrossRef Kapur S, Baylink DJ, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone. 2003;32(3):241–51.PubMedCrossRef
20.
go back to reference Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.PubMedCrossRef Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.PubMedCrossRef
21.
go back to reference Gao A, Hang R, Huang X, Zhao L, Zhang X, Wang L, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35(13):4223–35.PubMedCrossRef Gao A, Hang R, Huang X, Zhao L, Zhang X, Wang L, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35(13):4223–35.PubMedCrossRef
22.
23.
go back to reference Gonzalez-Chavez SA, Quinonez-Flores CM, Pacheco-Tena C. Molecular mechanisms of bone formation in spondyloarthritis. Joint Bone Spine. 2016;83(4):394–400.PubMedCrossRef Gonzalez-Chavez SA, Quinonez-Flores CM, Pacheco-Tena C. Molecular mechanisms of bone formation in spondyloarthritis. Joint Bone Spine. 2016;83(4):394–400.PubMedCrossRef
24.
go back to reference Bousson V, Bergot C, Sutter B, Thomas T, Bendavid S, Benhamou CL, et al. Trabecular bone score: where are we now? Joint Bone Spine. 2015;82(5):320–5.PubMedCrossRef Bousson V, Bergot C, Sutter B, Thomas T, Bendavid S, Benhamou CL, et al. Trabecular bone score: where are we now? Joint Bone Spine. 2015;82(5):320–5.PubMedCrossRef
25.
go back to reference Yuan Y, Zhang L, Tong X, Zhang M, Zhao Y, Guo J, et al. Mechanical stress regulates bone metabolism through MicroRNAs. J Cell Physiol. 2017;232(6):1239–45.PubMedCrossRef Yuan Y, Zhang L, Tong X, Zhang M, Zhao Y, Guo J, et al. Mechanical stress regulates bone metabolism through MicroRNAs. J Cell Physiol. 2017;232(6):1239–45.PubMedCrossRef
26.
go back to reference Hinton PS, Nigh P, Thyfault J. Effectiveness of resistance training or jumping-exercise to increase bone mineral density in men with low bone mass: a 12-month randomized, clinical trial. Bone. 2015;79:203–12.PubMedPubMedCentralCrossRef Hinton PS, Nigh P, Thyfault J. Effectiveness of resistance training or jumping-exercise to increase bone mineral density in men with low bone mass: a 12-month randomized, clinical trial. Bone. 2015;79:203–12.PubMedPubMedCentralCrossRef
27.
go back to reference Toure DM, ElRayes W, Barnes-Josiah D, Hartman T, Klinkebiel D, Baccaglini L. Epigenetic modifications of human placenta associated with preterm birth: a systematic review. J Matern Fetal Neonatal Med. 2018;31(4):530–41.PubMedCrossRef Toure DM, ElRayes W, Barnes-Josiah D, Hartman T, Klinkebiel D, Baccaglini L. Epigenetic modifications of human placenta associated with preterm birth: a systematic review. J Matern Fetal Neonatal Med. 2018;31(4):530–41.PubMedCrossRef
28.
go back to reference Matsui H, Harada I, Ishijima M, Sawada Y. Space flight/bedrest immobilization and bone. Mechanical stress : a double-edged sword to osteoarthritis. Clin Calcium. 2012;22(12):1855–62.PubMed Matsui H, Harada I, Ishijima M, Sawada Y. Space flight/bedrest immobilization and bone. Mechanical stress : a double-edged sword to osteoarthritis. Clin Calcium. 2012;22(12):1855–62.PubMed
29.
go back to reference Rumney RMH, Lanham SA, Kanczler JM, Kao AP, Thiagarajan L, Dixon JE, et al. In vivo delivery of VEGF RNA and protein to increase osteogenesis and intraosseous angiogenesis. Sci Rep. 2019;9(1):17745.PubMedPubMedCentralCrossRef Rumney RMH, Lanham SA, Kanczler JM, Kao AP, Thiagarajan L, Dixon JE, et al. In vivo delivery of VEGF RNA and protein to increase osteogenesis and intraosseous angiogenesis. Sci Rep. 2019;9(1):17745.PubMedPubMedCentralCrossRef
30.
go back to reference Salimi A, Babashamsi M. Cloning and optimization of soluble vascular endothelial growth Factor165 expression in Escherichia coli. Avicenna J Med Biotechnol. 2016;8(1):23–8.PubMedPubMedCentral Salimi A, Babashamsi M. Cloning and optimization of soluble vascular endothelial growth Factor165 expression in Escherichia coli. Avicenna J Med Biotechnol. 2016;8(1):23–8.PubMedPubMedCentral
31.
go back to reference Wan Y, Yang S, Sun F, Wang J, Chen Q, Hong A. All-trans retinoic acid induces chromatin remodeling at the promoter of the mouse liver, bone, and kidney alkaline phosphatase gene in C3H10T 1/2 cells. Biochem Genet. 2012;50(7–8):495–507.PubMedCrossRef Wan Y, Yang S, Sun F, Wang J, Chen Q, Hong A. All-trans retinoic acid induces chromatin remodeling at the promoter of the mouse liver, bone, and kidney alkaline phosphatase gene in C3H10T 1/2 cells. Biochem Genet. 2012;50(7–8):495–507.PubMedCrossRef
32.
33.
go back to reference Lv WT, Du DH, Gao RJ, Yu CW, Jia Y, Jia ZF, et al. Regulation of Hedgehog signaling Offers A Novel Perspective for Bone Homeostasis Disorder Treatment. Int J Mol Sci. 2019;20(16):3981.PubMedCentralCrossRef Lv WT, Du DH, Gao RJ, Yu CW, Jia Y, Jia ZF, et al. Regulation of Hedgehog signaling Offers A Novel Perspective for Bone Homeostasis Disorder Treatment. Int J Mol Sci. 2019;20(16):3981.PubMedCentralCrossRef
34.
go back to reference Zhao JJ, Wu ZF, Wang L, Feng DH, Cheng L. MicroRNA-145 mediates steroid-induced necrosis of the femoral head by targeting the OPG/RANK/RANKL signaling pathway. PLoS One. 2016;11(7):e0159805.PubMedPubMedCentralCrossRef Zhao JJ, Wu ZF, Wang L, Feng DH, Cheng L. MicroRNA-145 mediates steroid-induced necrosis of the femoral head by targeting the OPG/RANK/RANKL signaling pathway. PLoS One. 2016;11(7):e0159805.PubMedPubMedCentralCrossRef
35.
go back to reference Tomimori Y, Mori K, Koide M, Nakamichi Y, Ninomiya T, Udagawa N, et al. Evaluation of pharmaceuticals with a novel 50-hour animal model of bone loss. J Bone Miner Res. 2009;24(7):1194–205.PubMedCrossRef Tomimori Y, Mori K, Koide M, Nakamichi Y, Ninomiya T, Udagawa N, et al. Evaluation of pharmaceuticals with a novel 50-hour animal model of bone loss. J Bone Miner Res. 2009;24(7):1194–205.PubMedCrossRef
36.
go back to reference Klejna K, Naumnik B, Gasowska K, Mysliwiec M. OPG/RANK/RANKL signaling system and its significance in nephrology. Folia Histochem Cytobiol. 2009;47(2):199–206.PubMedCrossRef Klejna K, Naumnik B, Gasowska K, Mysliwiec M. OPG/RANK/RANKL signaling system and its significance in nephrology. Folia Histochem Cytobiol. 2009;47(2):199–206.PubMedCrossRef
37.
go back to reference Li S, Li Q, Zhu Y, Hu W. GDF15 induced by compressive force contributes to osteoclast differentiation in human periodontal ligament cells. Exp Cell Res. 2020;387(1):111745.PubMedCrossRef Li S, Li Q, Zhu Y, Hu W. GDF15 induced by compressive force contributes to osteoclast differentiation in human periodontal ligament cells. Exp Cell Res. 2020;387(1):111745.PubMedCrossRef
38.
go back to reference Grimm S, Walter C, Pabst A, Goldschmitt J, Wehrbein H, Jacobs C. Effect of compressive loading and incubation with clodronate on the RANKL/OPG system of human osteoblasts. J Orofac Orthop. 2015;76(6):531–42.PubMedCrossRef Grimm S, Walter C, Pabst A, Goldschmitt J, Wehrbein H, Jacobs C. Effect of compressive loading and incubation with clodronate on the RANKL/OPG system of human osteoblasts. J Orofac Orthop. 2015;76(6):531–42.PubMedCrossRef
39.
go back to reference Okazaki S, Nagoya S, Tateda K, Katada R, Mizuo K, Watanabe S, et al. Weight bearing does not contribute to the development of osteonecrosis of the femoral head. Int J Exp Pathol. 2012;93(6):458–62.PubMedPubMedCentralCrossRef Okazaki S, Nagoya S, Tateda K, Katada R, Mizuo K, Watanabe S, et al. Weight bearing does not contribute to the development of osteonecrosis of the femoral head. Int J Exp Pathol. 2012;93(6):458–62.PubMedPubMedCentralCrossRef
40.
go back to reference Tromp AM, Bravenboer N, Tanck E, Oostlander A, Holzmann PJ, Kostense PJ, et al. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure. Calcif Tissue Int. 2006;79(6):404–15.PubMedCrossRef Tromp AM, Bravenboer N, Tanck E, Oostlander A, Holzmann PJ, Kostense PJ, et al. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure. Calcif Tissue Int. 2006;79(6):404–15.PubMedCrossRef
41.
go back to reference Ikenoue T, Trindade MC, Lee MS, Lin EY, Schurman DJ, Goodman SB, et al. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res. 2003;21(1):110–6.PubMedCrossRef Ikenoue T, Trindade MC, Lee MS, Lin EY, Schurman DJ, Goodman SB, et al. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res. 2003;21(1):110–6.PubMedCrossRef
42.
go back to reference Madej W, Buma P, van der Kraan P. Inflammatory conditions partly impair the mechanically mediated activation of Smad2/3 signaling in articular cartilage. Arthritis Res Ther. 2016;18:146.PubMedPubMedCentralCrossRef Madej W, Buma P, van der Kraan P. Inflammatory conditions partly impair the mechanically mediated activation of Smad2/3 signaling in articular cartilage. Arthritis Res Ther. 2016;18:146.PubMedPubMedCentralCrossRef
43.
go back to reference Lin PM, Chen CT, Torzilli PA. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr Cartil. 2004;12(6):485–96.PubMedCrossRef Lin PM, Chen CT, Torzilli PA. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr Cartil. 2004;12(6):485–96.PubMedCrossRef
Metadata
Title
Proper mechanical stress promotes femoral head recovery from steroid-induced osteonecrosis in rats through the OPG/RANK/RANKL system
Authors
Dapeng Fu
Kairong Qin
Sheng Yang
Jianmin Lu
Haoyi Lian
Dewei Zhao
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03301-6

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue