Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Research article

Which anatomic structures are responsible for the reduction loss after hybrid stabilization of osteoporotic fractures of the thoracolumbar spine?

Authors: Ulrich J. Spiegl, Annette B. Ahrberg, Christine Anemüller, Jan-Sven Jarvers, Stefan Glasmacher, Nicolaus von der Höh, Christoph Josten, Christoph-Eckhard Heyde

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Introduction

Hybrid stabilization is an accepted therapy strategy for unstable osteoporotic thoracolumbar fractures. However, a moderate reduction loss has been reported and it remains unclear which anatomic structure is responsible for the reduction loss.

Methods

This retrospective study was performed at a level I trauma center. Patients aged 61 and older were stabilized using hybrid stabilization after suffering acute and unstable osteoporotic vertebral body fractures at the thoracolumbar spine. Posterior stabilization was done short-segmental and minimal invasive with cement-augmentation of all pedicle screws. The minimum follow-up has been 2 years. The outcome parameters were the reduction loss and the relative loss of height of both intervertebral discs adjacent to the fractured vertebral body, the fractured vertebral body and a reference disc (intervertebral disc superior of the stabilization) between the postoperative and latest lateral radiographs. Additionally, implant positioning and loosening was analyzed.

Results

29 mainly female (72%) patients (73.3 ± 6.0 years) were included. Fractures consisted of 26 incomplete burst fractures and 3 complete burst fractures of the thoracolumbar junction (Th11 – L2: 86%) and the midlumbar spine. The mean follow-up time was 36 months (range: 24–58 months). The mean reduction loss was 7.7° (range: 1–25). The relative loss of heights of both intervertebral discs adjacent to the fractured vertebral body, the reference disc, and the central vertebral body were significant. Thereby, the relative loss of the superior disc height was significant higher compared to the reference disc. Additionally, only the relative loss of central vertebral body height and reduction loss correlated significantly. There were no signs of implant loosening in any patient.

Conclusions

The mean reduction loss was moderate 3 years after hybrid stabilization of unstable osteoporotic vertebral fractures of the thoracolumbar spine. A significant loss of both adjacent disc heights and the central vertebral body was seen, with the highest loss in the superior adjacent disc significantly outranging the reference disc. The superior adjacent intervertebral disc and the central part of the fractured vertebral body seem to be responsible for the majority of reduction loss.
Literature
3.
go back to reference Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, Reinhold M, Aarabi B, Kandziora F, Chapman J, Shanmuganathan R, Fehlings M, Vialle L, Injury AOSC, Trauma Knowledge F. AOSpine thoracolumbar spine Injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976). 2013;38(23):2028–37. https://doi.org/10.1097/BRS.0b013e3182a8a381.CrossRef Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, Reinhold M, Aarabi B, Kandziora F, Chapman J, Shanmuganathan R, Fehlings M, Vialle L, Injury AOSC, Trauma Knowledge F. AOSpine thoracolumbar spine Injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976). 2013;38(23):2028–37. https://​doi.​org/​10.​1097/​BRS.​0b013e3182a8a381​.CrossRef
4.
go back to reference Schnake KJ, Blattert TR, Hahn P, Franck A, Hartmann F, Ullrich B, Verheyden A, Mork S, Zimmermann V, Gonschorek O, Muller M, Katscher S, Saman AE, Pajenda G, Morrison R, Schinkel C, Piltz S, Partenheimer A, Muller CW, Gercek E, Scherer M, Bouzraki N, Kandziora F, Spine Section of the German Society for O, Trauma. Classification of osteoporotic thoracolumbar spine fractures: recommendations of the spine section of the German Society for Orthopaedics and Trauma (DGOU). Global Spine J. 2018;8(2 Suppl):46S–9S. https://doi.org/10.1177/2192568217717972.CrossRefPubMedPubMedCentral Schnake KJ, Blattert TR, Hahn P, Franck A, Hartmann F, Ullrich B, Verheyden A, Mork S, Zimmermann V, Gonschorek O, Muller M, Katscher S, Saman AE, Pajenda G, Morrison R, Schinkel C, Piltz S, Partenheimer A, Muller CW, Gercek E, Scherer M, Bouzraki N, Kandziora F, Spine Section of the German Society for O, Trauma. Classification of osteoporotic thoracolumbar spine fractures: recommendations of the spine section of the German Society for Orthopaedics and Trauma (DGOU). Global Spine J. 2018;8(2 Suppl):46S–9S. https://​doi.​org/​10.​1177/​2192568217717972​.CrossRefPubMedPubMedCentral
5.
go back to reference Blattert TR, Schnake KJ, Gonschorek O, Gercek E, Hartmann F, Katscher S, Mork S, Morrison R, Muller M, Partenheimer A, Piltz S, Scherer MA, Ullrich BW, Verheyden A, Zimmermann V, Spine Section of the German Society for O, Trauma. Nonsurgical and surgical Management of Osteoporotic Vertebral Body Fractures: recommendations of the spine section of the German Society for Orthopaedics and Trauma (DGOU). Global Spine J. 2018;8(2 Suppl):50S–5S. https://doi.org/10.1177/2192568217745823.CrossRefPubMedPubMedCentral Blattert TR, Schnake KJ, Gonschorek O, Gercek E, Hartmann F, Katscher S, Mork S, Morrison R, Muller M, Partenheimer A, Piltz S, Scherer MA, Ullrich BW, Verheyden A, Zimmermann V, Spine Section of the German Society for O, Trauma. Nonsurgical and surgical Management of Osteoporotic Vertebral Body Fractures: recommendations of the spine section of the German Society for Orthopaedics and Trauma (DGOU). Global Spine J. 2018;8(2 Suppl):50S–5S. https://​doi.​org/​10.​1177/​2192568217745823​.CrossRefPubMedPubMedCentral
12.
18.
go back to reference Uchida K, Nakajima H, Yayama T, Miyazaki T, Hirai T, Kobayashi S, Chen K, Guerrero AR, Baba H. Vertebroplasty-augmented short-segment posterior fixation of osteoporotic vertebral collapse with neurological deficit in the thoracolumbar spine: comparisons with posterior surgery without vertebroplasty and anterior surgery. J Neurosurg Spine. 2010;13(5):612–21. https://doi.org/10.3171/2010.5.SPINE09813.CrossRefPubMed Uchida K, Nakajima H, Yayama T, Miyazaki T, Hirai T, Kobayashi S, Chen K, Guerrero AR, Baba H. Vertebroplasty-augmented short-segment posterior fixation of osteoporotic vertebral collapse with neurological deficit in the thoracolumbar spine: comparisons with posterior surgery without vertebroplasty and anterior surgery. J Neurosurg Spine. 2010;13(5):612–21. https://​doi.​org/​10.​3171/​2010.​5.​SPINE09813.CrossRefPubMed
20.
go back to reference Minamide A, Maeda T, Yamada H, Murakami K, Okada M, Enyo Y, Nakagawa Y, Iwasaki H, Tsutsui S, Takami M, Nagata K, Hashizume H, Yukawa Y, Schoenfeld AJ, Simpson AK. Early versus delayed kyphoplasty for thoracolumbar osteoporotic vertebral fractures: the effect of timing on clinical and radiographic outcomes and subsequent compression fractures. Clin Neurol Neurosurg. 2018;173:176–81. https://doi.org/10.1016/j.clineuro.2018.07.019.CrossRefPubMed Minamide A, Maeda T, Yamada H, Murakami K, Okada M, Enyo Y, Nakagawa Y, Iwasaki H, Tsutsui S, Takami M, Nagata K, Hashizume H, Yukawa Y, Schoenfeld AJ, Simpson AK. Early versus delayed kyphoplasty for thoracolumbar osteoporotic vertebral fractures: the effect of timing on clinical and radiographic outcomes and subsequent compression fractures. Clin Neurol Neurosurg. 2018;173:176–81. https://​doi.​org/​10.​1016/​j.​clineuro.​2018.​07.​019.CrossRefPubMed
22.
Metadata
Title
Which anatomic structures are responsible for the reduction loss after hybrid stabilization of osteoporotic fractures of the thoracolumbar spine?
Authors
Ulrich J. Spiegl
Annette B. Ahrberg
Christine Anemüller
Jan-Sven Jarvers
Stefan Glasmacher
Nicolaus von der Höh
Christoph Josten
Christoph-Eckhard Heyde
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-3065-3

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue