Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2015

Open Access 01-12-2015 | Research article

Can bone apposition predict the retention force of a femoral stem? An experimental weight-bearing hip-implant model in goats

Authors: Knut Harboe, Christian Lycke Ellingsen, Einar Sudmann, Nils Roar Gjerdet, Kjetil Søreide, Kari Indrekvam

Published in: BMC Musculoskeletal Disorders | Issue 1/2015

Login to get access

Abstract

Background

The increasing incidence of prosthesis revision surgery in the Western world has led to an increased focus on the capacity for stem removal. We previously reported on a femoral stem implanted in goats with an approximate 15% reduction in retention force by drilling longitudinally orientated grooves on the side of the stem. In this current study, we aimed to histologically evaluate the bony apposition towards this stem and correlate this apposition with the pullout force.

Methods

We analyzed the femora of 22 goats after stem removal. All stems remained in place for 6 months, and the goats were allowed regular loading of the hip during this time. For histological evaluation, all femora were immersed in EDTA and decalcified until sufficiently soft for standard technique preparation. We evaluated bone apposition, the presence of foreign particle debris and other factors. The apposition was evaluated with a scoring system based on semi-quantitative bone apposition in four quadrants. Kappa statistics were calculated for the score. We correlated the retention force with the amount of bone apposition.

Results

The stem drilling was the only significant factor influencing the retention force (p = 0.020). The bone apposition Kappa score comparing poor and good apposition scores was fair (κ = 0.4, 95% CI 0.00–0.88). Signs of foreign body reaction were noted in 5 of 22 goats.

Conclusions

Based on the current findings in an experimental goat model, it appears that the effect of drilling tissue/bone out of the longitudinal grooves has a more significant impact on the retention force required to remove the stem than the amount of bone apposition outside the stem grooves. This observation may be further explored in the research of stem designs that are potentially easier to remove.
Literature
1.
go back to reference Santaguida PL, Hawker GA, Hudak PL, Glazier R, Mahomed NN, Kreder HJ, et al. Patient characteristics affecting the prognosis of total hip and knee joint arthroplasty: a systematic review. Can J Surg. 2008;51:428–36.PubMedPubMedCentral Santaguida PL, Hawker GA, Hudak PL, Glazier R, Mahomed NN, Kreder HJ, et al. Patient characteristics affecting the prognosis of total hip and knee joint arthroplasty: a systematic review. Can J Surg. 2008;51:428–36.PubMedPubMedCentral
2.
go back to reference Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780–5.CrossRefPubMed Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780–5.CrossRefPubMed
3.
go back to reference Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res. 2009;467:2606–12.CrossRefPubMedPubMedCentral Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res. 2009;467:2606–12.CrossRefPubMedPubMedCentral
4.
go back to reference Kop AM, Keogh C, Swarts E. Proximal component modularity in THA–at what cost? An implant retrieval study. Clin Orthop Relat Res. 2012;470:1885–94.CrossRefPubMed Kop AM, Keogh C, Swarts E. Proximal component modularity in THA–at what cost? An implant retrieval study. Clin Orthop Relat Res. 2012;470:1885–94.CrossRefPubMed
5.
go back to reference Tevelen GA, Pearcy MJ, Crawford RW. Re-design of the Exeter V40 long-stem femoral component for ease of removal. Proc Inst Mech Eng H. 2007;221:195–201.CrossRefPubMed Tevelen GA, Pearcy MJ, Crawford RW. Re-design of the Exeter V40 long-stem femoral component for ease of removal. Proc Inst Mech Eng H. 2007;221:195–201.CrossRefPubMed
6.
go back to reference Harboe K, Enoksen CH, Gjerdet NR, Sudmann E. Development of a femoral stem providing strong anchorage and facilitated removal. An experimental study in goats. Vet Comp Orthop Traumatol. 2012;25:95–101.CrossRefPubMed Harboe K, Enoksen CH, Gjerdet NR, Sudmann E. Development of a femoral stem providing strong anchorage and facilitated removal. An experimental study in goats. Vet Comp Orthop Traumatol. 2012;25:95–101.CrossRefPubMed
7.
go back to reference Hofmann AA, Bachus KN, Bloebaum RD. Comparative study of human cancellous bone remodeling to titanium and hydroxyapatite-coated implants. J Arthroplasty. 1993;8:157–66.CrossRefPubMed Hofmann AA, Bachus KN, Bloebaum RD. Comparative study of human cancellous bone remodeling to titanium and hydroxyapatite-coated implants. J Arthroplasty. 1993;8:157–66.CrossRefPubMed
8.
go back to reference Soballe K, Hansen ES, Brockstedt-Rasmussen H, Hjortdal VE, Juhl GI, Pedersen CM, et al. Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop Relat Res. 1991:300–307. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Hjortdal VE, Juhl GI, Pedersen CM, et al. Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop Relat Res. 1991:300–307.
9.
go back to reference Stephenson PK, Freeman MA, Revell PA, Germain J, Tuke M, Pirie CJ. The effect of hydroxyapatite coating on ingrowth of bone into cavities in an implant. J Arthroplasty. 1991;6:51–8.CrossRefPubMed Stephenson PK, Freeman MA, Revell PA, Germain J, Tuke M, Pirie CJ. The effect of hydroxyapatite coating on ingrowth of bone into cavities in an implant. J Arthroplasty. 1991;6:51–8.CrossRefPubMed
10.
go back to reference de Waal MJ. Early Features of the Bone-Implant Interface in Hip Arthroplasty. A comparative study in the proximal femur of the goat after implantation of a cemented versus an uncemented endoprosthesis. Nijmegen: Catholic University, Laboratory for Experimental Orthopaedics, Orthopaedic Institute; 1988. de Waal MJ. Early Features of the Bone-Implant Interface in Hip Arthroplasty. A comparative study in the proximal femur of the goat after implantation of a cemented versus an uncemented endoprosthesis. Nijmegen: Catholic University, Laboratory for Experimental Orthopaedics, Orthopaedic Institute; 1988.
11.
go back to reference Khalily C, Malkani AL, Hellman E, Voor MJ. Arthroplasty in the goat hip. J Invest Surg. 1997;10:119–23.CrossRefPubMed Khalily C, Malkani AL, Hellman E, Voor MJ. Arthroplasty in the goat hip. J Invest Surg. 1997;10:119–23.CrossRefPubMed
12.
go back to reference Laane M, Lie T. Moderne mikroskopi med enkle metoder. Oslo: Unipub; 2007. Laane M, Lie T. Moderne mikroskopi med enkle metoder. Oslo: Unipub; 2007.
13.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed
14.
go back to reference Timperley AJ, Nusem I, Wilson K, Whitehouse SL, Buma P, Crawford RW. A modified cementing technique using bonesource to augment fixation of the acetabulum in a sheep model. Acta Orthop. 2010;81:503–7.CrossRefPubMedPubMedCentral Timperley AJ, Nusem I, Wilson K, Whitehouse SL, Buma P, Crawford RW. A modified cementing technique using bonesource to augment fixation of the acetabulum in a sheep model. Acta Orthop. 2010;81:503–7.CrossRefPubMedPubMedCentral
15.
go back to reference Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl. 1993;255:1–58.CrossRefPubMed Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl. 1993;255:1–58.CrossRefPubMed
16.
go back to reference Borsari V, Fini M, Giavaresi G, Rimondini L, Consolo U, Chiusoli L, et al. Osteointegration of titanium and hydroxyapatite rough surfaces in healthy and compromised cortical and trabecular bone: in vivo comparative study on young, aged, and estrogen-deficient sheep. J Orthop Res. 2007;25:1250–60.CrossRefPubMed Borsari V, Fini M, Giavaresi G, Rimondini L, Consolo U, Chiusoli L, et al. Osteointegration of titanium and hydroxyapatite rough surfaces in healthy and compromised cortical and trabecular bone: in vivo comparative study on young, aged, and estrogen-deficient sheep. J Orthop Res. 2007;25:1250–60.CrossRefPubMed
17.
go back to reference Biemond JE, Aquarius R, Verdonschot N, Buma P. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology. Arch Orthop Trauma Surg. 2011;131:711–8.CrossRefPubMed Biemond JE, Aquarius R, Verdonschot N, Buma P. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology. Arch Orthop Trauma Surg. 2011;131:711–8.CrossRefPubMed
18.
go back to reference Coathup MJ, Cobb JP, Walker PS, Blunn GW. Plate fixation of prostheses after segmental resection for bone tumours. J Orthop Res. 2000;18:865–72.CrossRefPubMed Coathup MJ, Cobb JP, Walker PS, Blunn GW. Plate fixation of prostheses after segmental resection for bone tumours. J Orthop Res. 2000;18:865–72.CrossRefPubMed
19.
go back to reference Kalia P, Blunn GW, Miller J, Bhalla A, Wiseman M, Coathup MJ. Do autologous mesenchymal stem cells augment bone growth and contact to massive bone tumor implants? Tissue Eng. 2006;12:1617–26.CrossRefPubMed Kalia P, Blunn GW, Miller J, Bhalla A, Wiseman M, Coathup MJ. Do autologous mesenchymal stem cells augment bone growth and contact to massive bone tumor implants? Tissue Eng. 2006;12:1617–26.CrossRefPubMed
20.
go back to reference Kalia P, Coathup MJ, Oussedik S, Konan S, Dodd M, Haddad FS, et al. Augmentation of bone growth onto the acetabular cup surface using bone marrow stromal cells in total hip replacement surgery. Tissue Eng Part A. 2009;15:3689–96.CrossRefPubMed Kalia P, Coathup MJ, Oussedik S, Konan S, Dodd M, Haddad FS, et al. Augmentation of bone growth onto the acetabular cup surface using bone marrow stromal cells in total hip replacement surgery. Tissue Eng Part A. 2009;15:3689–96.CrossRefPubMed
21.
go back to reference Franchi M, Bacchelli B, Giavaresi G, De Pasquale V, Martini D, Fini M, et al. Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis in sheep. J Periodontol. 2007;78:879–88.CrossRefPubMed Franchi M, Bacchelli B, Giavaresi G, De Pasquale V, Martini D, Fini M, et al. Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis in sheep. J Periodontol. 2007;78:879–88.CrossRefPubMed
Metadata
Title
Can bone apposition predict the retention force of a femoral stem? An experimental weight-bearing hip-implant model in goats
Authors
Knut Harboe
Christian Lycke Ellingsen
Einar Sudmann
Nils Roar Gjerdet
Kjetil Søreide
Kari Indrekvam
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2015
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-015-0560-z

Other articles of this Issue 1/2015

BMC Musculoskeletal Disorders 1/2015 Go to the issue