Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2020

01-12-2020 | Sildenafil | Research article

NTP42, a novel antagonist of the thromboxane receptor, attenuates experimentally induced pulmonary arterial hypertension

Authors: Eamon P. Mulvaney, Helen M. Reid, Lucia Bialesova, Annie Bouchard, Dany Salvail, B. Therese Kinsella

Published in: BMC Pulmonary Medicine | Issue 1/2020

Login to get access

Abstract

Background

NTP42 is a novel antagonist of the thromboxane prostanoid receptor (TP), currently in development for the treatment of pulmonary arterial hypertension (PAH). PAH is a devastating disease with multiple pathophysiological hallmarks including excessive pulmonary vasoconstriction, vascular remodelling, inflammation, fibrosis, in situ thrombosis and right ventricular hypertrophy. Signalling through the TP, thromboxane (TX) A2 is a potent vasoconstrictor and mediator of platelet aggregation. It is also a pro-mitogenic, pro-inflammatory and pro-fibrotic agent. Moreover, the TP also mediates the adverse actions of the isoprostane 8-iso-prostaglandin F, a free-radical-derived product of arachidonic acid produced in abundance during oxidative injury. Mechanistically, TP antagonists should treat most of the hallmarks of PAH, including inhibiting the excessive vasoconstriction and pulmonary artery remodelling, in situ thrombosis, inflammation and fibrosis. This study aimed to investigate the efficacy of NTP42 in the monocrotaline (MCT)-induced PAH rat model, alongside current standard-of-care drugs.

Methods

PAH was induced by subcutaneous injection of 60 mg/kg MCT in male Wistar–Kyoto rats. Animals were assigned into groups: 1. ‘No MCT’; 2. ‘MCT Only’; 3. MCT + NTP42 (0.25 mg/kg BID); 4. MCT + Sildenafil (50 mg/kg BID), and 5. MCT + Selexipag (1 mg/kg BID), where 28-day drug treatment was initiated within 24 h post-MCT.

Results

From haemodynamic assessments, NTP42 reduced the MCT-induced PAH, including mean pulmonary arterial pressure (mPAP) and right systolic ventricular pressure (RSVP), being at least comparable to the standard-of-care drugs Sildenafil or Selexipag in bringing about these effects. Moreover, NTP42 was superior to Sildenafil and Selexipag in significantly reducing pulmonary vascular remodelling, inflammatory mast cell infiltration and fibrosis in MCT-treated animals.

Conclusions

These findings suggest that NTP42 and antagonism of the TP signalling pathway have a relevant role in alleviating the pathophysiology of PAH, representing a novel therapeutic target with marked benefits over existing standard-of-care therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:1.CrossRef Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:1.CrossRef
2.
go back to reference Capra V, Busnelli M, Perenna A, Ambrosio M, Accomazzo MR, Gales C, et al. Full and partial agonists of thromboxane prostanoid receptor unveil fine tuning of receptor superactive conformation and g protein activation. PLoS One. 2013;8(3):e60475.PubMedPubMedCentralCrossRef Capra V, Busnelli M, Perenna A, Ambrosio M, Accomazzo MR, Gales C, et al. Full and partial agonists of thromboxane prostanoid receptor unveil fine tuning of receptor superactive conformation and g protein activation. PLoS One. 2013;8(3):e60475.PubMedPubMedCentralCrossRef
3.
go back to reference Davi G, Santilli F, Vazzana N. Thromboxane receptors antagonists and/or synthase inhibitors. Handb Exp Pharmacol. 2012;210:261–86.CrossRef Davi G, Santilli F, Vazzana N. Thromboxane receptors antagonists and/or synthase inhibitors. Handb Exp Pharmacol. 2012;210:261–86.CrossRef
4.
go back to reference Devillier P, Bessard G. Thromboxane A2 and related prostaglandins in airways. Fundam Clin Pharmacol. 1997;11(1):2–18.PubMedCrossRef Devillier P, Bessard G. Thromboxane A2 and related prostaglandins in airways. Fundam Clin Pharmacol. 1997;11(1):2–18.PubMedCrossRef
5.
go back to reference Ekambaram P, Lambiv W, Cazzolli R, Ashton AW, Honn KV. The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis. Cancer Metastasis Rev. 2011;30(3–4):397–408.PubMedCrossRef Ekambaram P, Lambiv W, Cazzolli R, Ashton AW, Honn KV. The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis. Cancer Metastasis Rev. 2011;30(3–4):397–408.PubMedCrossRef
6.
go back to reference Mulvaney EP, Shilling C, Eivers SB, Perry AS, Bjartell A, Kay EW, et al. Expression of the TPalpha and TPbeta isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential. Oncotarget. 2016;7(45):73171–87.PubMedPubMedCentralCrossRef Mulvaney EP, Shilling C, Eivers SB, Perry AS, Bjartell A, Kay EW, et al. Expression of the TPalpha and TPbeta isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential. Oncotarget. 2016;7(45):73171–87.PubMedPubMedCentralCrossRef
7.
go back to reference O'Sullivan AG, Mulvaney EP, Hyland PB, Kinsella BT. Protein kinase C-related kinase 1 and 2 play an essential role in thromboxane-mediated neoplastic responses in prostate Cancer. Oncotarget. 2015;6(28):26437–56.PubMedPubMedCentral O'Sullivan AG, Mulvaney EP, Hyland PB, Kinsella BT. Protein kinase C-related kinase 1 and 2 play an essential role in thromboxane-mediated neoplastic responses in prostate Cancer. Oncotarget. 2015;6(28):26437–56.PubMedPubMedCentral
8.
go back to reference O'Sullivan AG, Eivers SB, Mulvaney EP, Kinsella BT. Regulated expression of the TPbeta isoform of the human T prostanoid receptor by the tumour suppressors FOXP1 and NKX3.1: implications for the role of thromboxane in prostate cancer. Biochim Biophys Acta. 2017;1863(12):3153–69.CrossRef O'Sullivan AG, Eivers SB, Mulvaney EP, Kinsella BT. Regulated expression of the TPbeta isoform of the human T prostanoid receptor by the tumour suppressors FOXP1 and NKX3.1: implications for the role of thromboxane in prostate cancer. Biochim Biophys Acta. 2017;1863(12):3153–69.CrossRef
9.
go back to reference Bauer J, Ripperger A, Frantz S, Ergun S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol. 2014;171(13):3115–31.PubMedPubMedCentralCrossRef Bauer J, Ripperger A, Frantz S, Ergun S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol. 2014;171(13):3115–31.PubMedPubMedCentralCrossRef
10.
go back to reference Zhang R, Sun ML, Fan YF, Jiang X, Zhao QH, He J, et al. Plasma 15-F2t-isoprostane in idiopathic pulmonary arterial hypertension. Int J Cardiol. 2014;175(2):268–73.PubMedCrossRef Zhang R, Sun ML, Fan YF, Jiang X, Zhao QH, He J, et al. Plasma 15-F2t-isoprostane in idiopathic pulmonary arterial hypertension. Int J Cardiol. 2014;175(2):268–73.PubMedCrossRef
11.
go back to reference Arezzini B, Vecchio D, Signorini C, Stringa B, Gardi C. F2-isoprostanes can mediate bleomycin-induced lung fibrosis. Free Radic Biol Med. 2018;115(Supplement C):1–9.PubMedCrossRef Arezzini B, Vecchio D, Signorini C, Stringa B, Gardi C. F2-isoprostanes can mediate bleomycin-induced lung fibrosis. Free Radic Biol Med. 2018;115(Supplement C):1–9.PubMedCrossRef
12.
go back to reference Roehl AB, Steendijk P, Baumert JH, Schnoor J, Rossaint R, Hein M. Comparison of 3 methods to induce acute pulmonary hypertension in pigs. Comp Med. 2009;59(3):280–6.PubMedPubMedCentral Roehl AB, Steendijk P, Baumert JH, Schnoor J, Rossaint R, Hein M. Comparison of 3 methods to induce acute pulmonary hypertension in pigs. Comp Med. 2009;59(3):280–6.PubMedPubMedCentral
13.
go back to reference Rothman AM, Arnold ND, Chang W, Watson O, Swift AJ, Condliffe R, et al. Pulmonary artery denervation reduces pulmonary artery pressure and induces histological changes in an acute porcine model of pulmonary hypertension. Circ Cardiovasc Interv. 2015;8(11):e002569.PubMedPubMedCentralCrossRef Rothman AM, Arnold ND, Chang W, Watson O, Swift AJ, Condliffe R, et al. Pulmonary artery denervation reduces pulmonary artery pressure and induces histological changes in an acute porcine model of pulmonary hypertension. Circ Cardiovasc Interv. 2015;8(11):e002569.PubMedPubMedCentralCrossRef
14.
go back to reference Bonnell MR, Urdaneta F, Kirby DS, Valdez NR, Beaver TM, Lobato EB. Effects of sildenafil analogue UK 343-664 on a porcine model of acute pulmonary hypertension. Ann Thorac Surg. 2004;77(1):238–42.PubMedCrossRef Bonnell MR, Urdaneta F, Kirby DS, Valdez NR, Beaver TM, Lobato EB. Effects of sildenafil analogue UK 343-664 on a porcine model of acute pulmonary hypertension. Ann Thorac Surg. 2004;77(1):238–42.PubMedCrossRef
15.
go back to reference Kylhammar D, Radegran G. Cyclooxygenase-2 inhibition and thromboxane a (2) receptor antagonism attenuate hypoxic pulmonary vasoconstriction in a porcine model. Acta Physiol (Oxford). 2012;205(4):507–19.CrossRef Kylhammar D, Radegran G. Cyclooxygenase-2 inhibition and thromboxane a (2) receptor antagonism attenuate hypoxic pulmonary vasoconstriction in a porcine model. Acta Physiol (Oxford). 2012;205(4):507–19.CrossRef
16.
go back to reference Kinsella BT, Reid HM. (inventors) Thromboxane receptor antagonists patent U.S. Patent No. 10,357,504. June 13; 2016. Kinsella BT, Reid HM. (inventors) Thromboxane receptor antagonists patent U.S. Patent No. 10,357,504. June 13; 2016.
17.
go back to reference Kinsella BT, Reid HM. (inventors) Thromboxane receptor antagonists patent U.S. Patent No. 9,932,304. June 16; 2015. Kinsella BT, Reid HM. (inventors) Thromboxane receptor antagonists patent U.S. Patent No. 9,932,304. June 16; 2015.
18.
go back to reference Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.PubMedPubMedCentralCrossRef Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.PubMedPubMedCentralCrossRef
19.
go back to reference Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–21.PubMedPubMedCentralCrossRef Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–21.PubMedPubMedCentralCrossRef
20.
go back to reference Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82(7–8):518–29.PubMedPubMedCentralCrossRef Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82(7–8):518–29.PubMedPubMedCentralCrossRef
21.
go back to reference Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23(4):291–9.PubMed Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23(4):291–9.PubMed
22.
go back to reference St Croix CM, Steinhorn RH. New thoughts about the origin of Plexiform lesions. Am J Respir Crit Care Med. 2016;193(5):484–5.PubMedCrossRef St Croix CM, Steinhorn RH. New thoughts about the origin of Plexiform lesions. Am J Respir Crit Care Med. 2016;193(5):484–5.PubMedCrossRef
23.
go back to reference Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165–75.PubMedPubMedCentralCrossRef Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165–75.PubMedPubMedCentralCrossRef
24.
go back to reference Xu J, Wang J, Shao C, Zeng X, Sun L, Kong H, et al. New dynamic viewing of mast cells in pulmonary arterial hypertension (PAH): contributors or outsiders to cardiovascular remodeling. J Thorac Dis. 2018;10(5):3016–26.PubMedPubMedCentralCrossRef Xu J, Wang J, Shao C, Zeng X, Sun L, Kong H, et al. New dynamic viewing of mast cells in pulmonary arterial hypertension (PAH): contributors or outsiders to cardiovascular remodeling. J Thorac Dis. 2018;10(5):3016–26.PubMedPubMedCentralCrossRef
26.
go back to reference Huetsch JC, Suresh K, Bernier M, Shimoda LA. Update on novel targets and potential treatment avenues in pulmonary hypertension. Am J Phys Lung Cell Mol Phys. 2016;311(5):L811–L31. Huetsch JC, Suresh K, Bernier M, Shimoda LA. Update on novel targets and potential treatment avenues in pulmonary hypertension. Am J Phys Lung Cell Mol Phys. 2016;311(5):L811–L31.
27.
go back to reference Fuse S, Kamiya T. Plasma thromboxane B2 concentration in pulmonary hypertension associated with congenital heart disease. Circulation. 1994;90(6):2952–5.PubMedCrossRef Fuse S, Kamiya T. Plasma thromboxane B2 concentration in pulmonary hypertension associated with congenital heart disease. Circulation. 1994;90(6):2952–5.PubMedCrossRef
28.
go back to reference Bui KC, Hammerman C, Hirschl R, Snedecor SM, Cheng KJ, Chan L, et al. Plasma prostanoids in neonatal extracorporeal membrane oxygenation. Influence of meconium aspiration. J Thorac Cardiovasc Surg. 1991;101(4):612–7.PubMedCrossRef Bui KC, Hammerman C, Hirschl R, Snedecor SM, Cheng KJ, Chan L, et al. Plasma prostanoids in neonatal extracorporeal membrane oxygenation. Influence of meconium aspiration. J Thorac Cardiovasc Surg. 1991;101(4):612–7.PubMedCrossRef
29.
go back to reference Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med. 1992;327(2):70–5.PubMedCrossRef Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med. 1992;327(2):70–5.PubMedCrossRef
30.
go back to reference Al-Naamani N, Palevsky HI, Lederer DJ, Horn EM, Mathai SC, Roberts KE, et al. Prognostic significance of biomarkers in pulmonary arterial hypertension. Ann Am Thorac Soc. 2016;13(1):25–30.PubMedPubMedCentralCrossRef Al-Naamani N, Palevsky HI, Lederer DJ, Horn EM, Mathai SC, Roberts KE, et al. Prognostic significance of biomarkers in pulmonary arterial hypertension. Ann Am Thorac Soc. 2016;13(1):25–30.PubMedPubMedCentralCrossRef
31.
go back to reference Katugampola SD, Davenport AP. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT (1) receptor antagonist losartan. Br J Pharmacol. 2001;134(7):1385–92.PubMedPubMedCentralCrossRef Katugampola SD, Davenport AP. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT (1) receptor antagonist losartan. Br J Pharmacol. 2001;134(7):1385–92.PubMedPubMedCentralCrossRef
32.
go back to reference West JD, Voss BM, Pavliv L, de Caestecker M, Hemnes AR, Carrier EJ. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload. Pulm Circ. 2016;6(2):211–23.PubMedPubMedCentralCrossRef West JD, Voss BM, Pavliv L, de Caestecker M, Hemnes AR, Carrier EJ. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload. Pulm Circ. 2016;6(2):211–23.PubMedPubMedCentralCrossRef
33.
go back to reference Farha S, Sharp J, Asosingh K, Park M, Comhair SA, Tang WH, et al. Mast cell number, phenotype, and function in human pulmonary arterial hypertension. Pulm Circ. 2012;2(2):220–8.PubMedPubMedCentralCrossRef Farha S, Sharp J, Asosingh K, Park M, Comhair SA, Tang WH, et al. Mast cell number, phenotype, and function in human pulmonary arterial hypertension. Pulm Circ. 2012;2(2):220–8.PubMedPubMedCentralCrossRef
34.
go back to reference Marks RM, Roche WR, Czerniecki M, Penny R, Nelson DS. Mast cell granules cause proliferation of human microvascular endothelial cells. Lab Investig. 1986;55(3):289–94.PubMed Marks RM, Roche WR, Czerniecki M, Penny R, Nelson DS. Mast cell granules cause proliferation of human microvascular endothelial cells. Lab Investig. 1986;55(3):289–94.PubMed
35.
go back to reference Cho SH, Yao Z, Wang SW, Alban RF, Barbers RG, French SW, et al. Regulation of activin a expression in mast cells and asthma: its effect on the proliferation of human airway smooth muscle cells. J Immunol. 2003;170(8):4045–52.PubMedCrossRef Cho SH, Yao Z, Wang SW, Alban RF, Barbers RG, French SW, et al. Regulation of activin a expression in mast cells and asthma: its effect on the proliferation of human airway smooth muscle cells. J Immunol. 2003;170(8):4045–52.PubMedCrossRef
36.
go back to reference Bradding P, Pejler G. The controversial role of mast cells in fibrosis. Immunol Rev. 2018;282(1):198–231.PubMedCrossRef Bradding P, Pejler G. The controversial role of mast cells in fibrosis. Immunol Rev. 2018;282(1):198–231.PubMedCrossRef
37.
go back to reference Morrow JD, Oates JA, Roberts LJ 2nd, Zackert WE, Mitchell TA, Lazarus G, et al. Increased formation of thromboxane in vivo in humans with mastocytosis. J Invest Dermatol. 1999;113(1):93–7.PubMedCrossRef Morrow JD, Oates JA, Roberts LJ 2nd, Zackert WE, Mitchell TA, Lazarus G, et al. Increased formation of thromboxane in vivo in humans with mastocytosis. J Invest Dermatol. 1999;113(1):93–7.PubMedCrossRef
38.
go back to reference Dahal BK, Kosanovic D, Kaulen C, Cornitescu T, Savai R, Hoffmann J, et al. Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats. Respir Res. 2011;12:60.PubMedPubMedCentralCrossRef Dahal BK, Kosanovic D, Kaulen C, Cornitescu T, Savai R, Hoffmann J, et al. Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats. Respir Res. 2011;12:60.PubMedPubMedCentralCrossRef
39.
go back to reference Hoffmann J, Yin J, Kukucka M, Yin N, Saarikko I, Sterner-Kock A, et al. Mast cells promote lung vascular remodelling in pulmonary hypertension. Eur Respir J. 2011;37(6):1400–10.PubMedCrossRef Hoffmann J, Yin J, Kukucka M, Yin N, Saarikko I, Sterner-Kock A, et al. Mast cells promote lung vascular remodelling in pulmonary hypertension. Eur Respir J. 2011;37(6):1400–10.PubMedCrossRef
40.
go back to reference Luitel H, Sydykov A, Schymura Y, Mamazhakypov A, Janssen W, Pradhan K, et al. Pressure overload leads to an increased accumulation and activity of mast cells in the right ventricle. Phys Rep. 2017;5:6. Luitel H, Sydykov A, Schymura Y, Mamazhakypov A, Janssen W, Pradhan K, et al. Pressure overload leads to an increased accumulation and activity of mast cells in the right ventricle. Phys Rep. 2017;5:6.
41.
go back to reference Rich S, Hart K, Kieras K, Brundage BH. Thromboxane synthetase inhibition in primary pulmonary hypertension. Chest. 1987;91(3):356–60.PubMedCrossRef Rich S, Hart K, Kieras K, Brundage BH. Thromboxane synthetase inhibition in primary pulmonary hypertension. Chest. 1987;91(3):356–60.PubMedCrossRef
42.
go back to reference Fike CD, Zhang Y, Kaplowitz MR. Thromboxane inhibition reduces an early stage of chronic hypoxia-induced pulmonary hypertension in piglets. J Appl Physiol (1985). 2005;99(2):670–6.CrossRef Fike CD, Zhang Y, Kaplowitz MR. Thromboxane inhibition reduces an early stage of chronic hypoxia-induced pulmonary hypertension in piglets. J Appl Physiol (1985). 2005;99(2):670–6.CrossRef
43.
go back to reference Langleben D, Christman BW, Barst RJ, Dias VC, Galie N, Higenbottam TW, et al. Effects of the thromboxane synthetase inhibitor and receptor antagonist terbogrel in patients with primary pulmonary hypertension. Am Heart J. 2002;143(5):E4.PubMedCrossRef Langleben D, Christman BW, Barst RJ, Dias VC, Galie N, Higenbottam TW, et al. Effects of the thromboxane synthetase inhibitor and receptor antagonist terbogrel in patients with primary pulmonary hypertension. Am Heart J. 2002;143(5):E4.PubMedCrossRef
44.
go back to reference Pagani-Estevez GL, Swetz KM, McGoon MD, Frantz RP, Tointon SK, Karnyski AM, et al. Characterization of prostacyclin-associated leg pain in patients with pulmonary arterial hypertension. Ann Am Thorac Soc. 2017;14(2):206–12.PubMed Pagani-Estevez GL, Swetz KM, McGoon MD, Frantz RP, Tointon SK, Karnyski AM, et al. Characterization of prostacyclin-associated leg pain in patients with pulmonary arterial hypertension. Ann Am Thorac Soc. 2017;14(2):206–12.PubMed
45.
go back to reference Guth BD, Narjes H, Schubert HD, Tanswell P, Riedel A, Nehmiz G. Pharmacokinetics and pharmacodynamics of terbogrel, a combined thromboxane A2 receptor and synthase inhibitor, in healthy subjects. Br J Clin Pharmacol. 2004;58(1):40–51.PubMedPubMedCentralCrossRef Guth BD, Narjes H, Schubert HD, Tanswell P, Riedel A, Nehmiz G. Pharmacokinetics and pharmacodynamics of terbogrel, a combined thromboxane A2 receptor and synthase inhibitor, in healthy subjects. Br J Clin Pharmacol. 2004;58(1):40–51.PubMedPubMedCentralCrossRef
46.
go back to reference Janssen LJ. Isoprostanes and lung vascular pathology. Am J Respir Cell Mol Biol. 2008;39(4):383–9.PubMedCrossRef Janssen LJ. Isoprostanes and lung vascular pathology. Am J Respir Cell Mol Biol. 2008;39(4):383–9.PubMedCrossRef
47.
go back to reference Gomez-Arroyo JG, Farkas L, Alhussaini AA, Farkas D, Kraskauskas D, Voelkel NF, et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Phys Lung Cell Mol Phys. 2012;302(4):L363–9. Gomez-Arroyo JG, Farkas L, Alhussaini AA, Farkas D, Kraskauskas D, Voelkel NF, et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Phys Lung Cell Mol Phys. 2012;302(4):L363–9.
48.
go back to reference Provencher S, Archer SL, Ramirez FD, Hibbert B, Paulin R, Boucherat O, et al. Standards and methodological rigor in pulmonary arterial hypertension preclinical and translational research. Circ Res. 2018;122(7):1021–32.PubMedCrossRef Provencher S, Archer SL, Ramirez FD, Hibbert B, Paulin R, Boucherat O, et al. Standards and methodological rigor in pulmonary arterial hypertension preclinical and translational research. Circ Res. 2018;122(7):1021–32.PubMedCrossRef
49.
go back to reference Zhao L. Chronic hypoxia-induced pulmonary hypertension in rat: the best animal model for studying pulmonary vasoconstriction and vascular medial hypertrophy. Drug Discov Today Dis Model. 2010;7(3):83–8.CrossRef Zhao L. Chronic hypoxia-induced pulmonary hypertension in rat: the best animal model for studying pulmonary vasoconstriction and vascular medial hypertrophy. Drug Discov Today Dis Model. 2010;7(3):83–8.CrossRef
50.
go back to reference Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Phys Lung Cell Mol Phys. 2009;297(6):L1013–32. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Phys Lung Cell Mol Phys. 2009;297(6):L1013–32.
51.
go back to reference Colvin KL, Yeager ME. Animal Models of Pulmonary Hypertension: Matching Disease Mechanisms to Etiology of the Human Disease. J Pulm Respir Med. 2014;4:4. Colvin KL, Yeager ME. Animal Models of Pulmonary Hypertension: Matching Disease Mechanisms to Etiology of the Human Disease. J Pulm Respir Med. 2014;4:4.
52.
go back to reference Bhat L, Hawkinson J, Cantillon M, Reddy DG, Bhat SR, Laurent CE, et al. RP5063, a novel, multimodal, serotonin receptor modulator, prevents monocrotaline-induced pulmonary arterial hypertension in rats. Eur J Pharmacol. 2017;810:92–9.PubMedCrossRef Bhat L, Hawkinson J, Cantillon M, Reddy DG, Bhat SR, Laurent CE, et al. RP5063, a novel, multimodal, serotonin receptor modulator, prevents monocrotaline-induced pulmonary arterial hypertension in rats. Eur J Pharmacol. 2017;810:92–9.PubMedCrossRef
53.
go back to reference Kuwano K, Hashino A, Noda K, Kosugi K, Kuwabara K. A long-acting and highly selective prostacyclin receptor agonist prodrug, 2-{4-[(5,6-diphenylpyrazin-2-yl) (isopropyl) amino]butoxy}-N-(methylsulfonyl) acetam ide (NS-304), ameliorates rat pulmonary hypertension with unique relaxant responses of its active form, {4-[(5,6-diphenylpyrazin-2-yl) (isopropyl) amino] butoxy} acetic acid (MRE-269), on rat pulmonary artery. J Pharmacol Exp Ther. 2008;326(3):691–9.PubMedCrossRef Kuwano K, Hashino A, Noda K, Kosugi K, Kuwabara K. A long-acting and highly selective prostacyclin receptor agonist prodrug, 2-{4-[(5,6-diphenylpyrazin-2-yl) (isopropyl) amino]butoxy}-N-(methylsulfonyl) acetam ide (NS-304), ameliorates rat pulmonary hypertension with unique relaxant responses of its active form, {4-[(5,6-diphenylpyrazin-2-yl) (isopropyl) amino] butoxy} acetic acid (MRE-269), on rat pulmonary artery. J Pharmacol Exp Ther. 2008;326(3):691–9.PubMedCrossRef
54.
go back to reference Hill NS, Gillespie MN, McMurtry IF. Fifty years of Monocrotaline-induced pulmonary hypertension: what has it meant to the field? Chest. 2017;152(6):1106–8.PubMedCrossRef Hill NS, Gillespie MN, McMurtry IF. Fifty years of Monocrotaline-induced pulmonary hypertension: what has it meant to the field? Chest. 2017;152(6):1106–8.PubMedCrossRef
55.
go back to reference Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119.PubMedCrossRef Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119.PubMedCrossRef
56.
go back to reference Klinger JR, Elliott CG, Levine DJ, Bossone E, Duvall L, Fagan K, et al. Therapy for pulmonary arterial hypertension in adults: update of the CHEST guideline and expert panel report. Chest. 2019;155(3):565–86.PubMedCrossRef Klinger JR, Elliott CG, Levine DJ, Bossone E, Duvall L, Fagan K, et al. Therapy for pulmonary arterial hypertension in adults: update of the CHEST guideline and expert panel report. Chest. 2019;155(3):565–86.PubMedCrossRef
Metadata
Title
NTP42, a novel antagonist of the thromboxane receptor, attenuates experimentally induced pulmonary arterial hypertension
Authors
Eamon P. Mulvaney
Helen M. Reid
Lucia Bialesova
Annie Bouchard
Dany Salvail
B. Therese Kinsella
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2020
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-020-1113-2

Other articles of this Issue 1/2020

BMC Pulmonary Medicine 1/2020 Go to the issue