Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2021

Open Access 01-12-2021 | Lung Cancer | Research article

Duration of lead time in screening for lung cancer

Author: Jochanan Benbassat

Published in: BMC Pulmonary Medicine | Issue 1/2021

Login to get access

Abstract

Background

Screening for lung cancer has used chest radiography (CR), low dose computed tomography (LDCT) and sputum cytology (SC). Estimates of the lead time (LT), i.e., the time interval from detection of lung cancer by screening to the development of symptoms, have been derived from longitudinal studies of populations at risk, tumor doubling time (DT), the ratio between its prevalence at the first round of screening and its annual incidence during follow-up, and by probability modeling derived from the results of screening trials.

Objective

To review and update the estimates of LT of lung cancer.

Methods

A non-systematic search of the literature for estimates of LT and screening trials. Search of the reference sections of the retrieved papers for additional relevant studies. Calculation of LTs derived from these studies.

Results

LT since detection by CR was 0.8–1.1 years if derived from longitudinal studies; 0.6–2.1 years if derived from prevalence / incidence ratios; 0.2 years if derived from the average tumor DT; and 0.2–1.0 if derived from probability modeling. LT since detection by LDCT was 1.1–3.5 if derived from prevalence / incidence ratios; 3.9 if derived from DT; and 0.9 if derived from probability modeling. LT since detection of squamous cell cancer by SC in persons with normal CR was 1.3–1.5 if derived from prevalence/incidence ratios; and 2.1 years if derived from the DT of squamous cell cancer.

Conclusions

Most estimates of the LT yield values of 0.2–1.5 years for detection by CR; of 0.9–3.5 years for detection by LDCT; and about 2 years or less for detection of squamous cell cancer by SC in persons with normal CR. The heterogeneity of the screening trials and methods of derivation may account for the variability of LT estimates.
Literature
1.
go back to reference Saccomanno G, Archer VE, Auerbach O, Saunders RP, Brennan IM. Development of carcinoma in the lung as reflected in exfoliated cells. Cancer. 1974;33:256–69.CrossRef Saccomanno G, Archer VE, Auerbach O, Saunders RP, Brennan IM. Development of carcinoma in the lung as reflected in exfoliated cells. Cancer. 1974;33:256–69.CrossRef
2.
go back to reference Riegler LG. The natural history of untreated lung cancer. Ann N Y Acad Sci. 1964;114:755–66.CrossRef Riegler LG. The natural history of untreated lung cancer. Ann N Y Acad Sci. 1964;114:755–66.CrossRef
3.
go back to reference Henschke CI, Salvatore M, Cham M, Powell CA, DiFabrizio L, Flores R, Kaufman A, Eber C, Yip R, Yankelevitz DF. Baseline and annual repeat rounds of screening implications for optimal regimens of screening. Eur Radiol. 2018;28:1085–94.CrossRef Henschke CI, Salvatore M, Cham M, Powell CA, DiFabrizio L, Flores R, Kaufman A, Eber C, Yip R, Yankelevitz DF. Baseline and annual repeat rounds of screening implications for optimal regimens of screening. Eur Radiol. 2018;28:1085–94.CrossRef
4.
go back to reference Geddes DM. The natural history of lung cancer. A review based on rates of tumor growth. Brit J Dis Chest. 1979;73:1–17.CrossRef Geddes DM. The natural history of lung cancer. A review based on rates of tumor growth. Brit J Dis Chest. 1979;73:1–17.CrossRef
5.
go back to reference Horowitz GL, Bleich HL. PaperChase: a computer program to search the medical literature. New Engl J Med. 1981;305:924–30.CrossRef Horowitz GL, Bleich HL. PaperChase: a computer program to search the medical literature. New Engl J Med. 1981;305:924–30.CrossRef
6.
go back to reference Weiss W. Implications of tumor growth rate for the natural history of lung cancer. J Occup Med. 1984;26:345–52.CrossRef Weiss W. Implications of tumor growth rate for the natural history of lung cancer. J Occup Med. 1984;26:345–52.CrossRef
7.
go back to reference Brett GZ. The value of lung cancer detection by six-monthly chest radiographs. Thorax. 1968;23:414.CrossRef Brett GZ. The value of lung cancer detection by six-monthly chest radiographs. Thorax. 1968;23:414.CrossRef
8.
go back to reference Fontana RS, Sanderson DR, Taylor WF, et al. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Mayo clinic study. Am Rev Respir Dis. 1984;130:561–5.PubMed Fontana RS, Sanderson DR, Taylor WF, et al. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Mayo clinic study. Am Rev Respir Dis. 1984;130:561–5.PubMed
9.
go back to reference Fontana RS, Sanderson DR, Woolner WB, Taylor WF, Miller WE, Muhm JR, Bernatz PE, Payne WS, Pairolero PC, Bergstralh EJ. Screening for lung cancer a critique of the mayo lung project. CANCER Supplement. 1991;67:1155–67.CrossRef Fontana RS, Sanderson DR, Woolner WB, Taylor WF, Miller WE, Muhm JR, Bernatz PE, Payne WS, Pairolero PC, Bergstralh EJ. Screening for lung cancer a critique of the mayo lung project. CANCER Supplement. 1991;67:1155–67.CrossRef
10.
go back to reference Frost JK, Ball WC, Levin ML. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the John Hopkins study. Am Rev Resp Dis. 1984;130:549–54.PubMed Frost JK, Ball WC, Levin ML. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the John Hopkins study. Am Rev Resp Dis. 1984;130:549–54.PubMed
11.
go back to reference Doria-Rose VP, Marcus PM, Szabo E. Randomized controlled trials of the efficacy of lung cancer screening by sputum cytology revisited: a combined mortality analysis from the Johns Hopkins lung project and the Memorial Sloan-Kettering lung study. Cancer. 2009;115:5007–17.CrossRef Doria-Rose VP, Marcus PM, Szabo E. Randomized controlled trials of the efficacy of lung cancer screening by sputum cytology revisited: a combined mortality analysis from the Johns Hopkins lung project and the Memorial Sloan-Kettering lung study. Cancer. 2009;115:5007–17.CrossRef
12.
go back to reference Melamed MR, Flehinger BJ, Zaman MB, Heelan RT, Perchick WA, Martini N. Screening for early lung cancer. results of the memorial sloan-kettering study In New York. Chest. 1984;86:44–53.CrossRef Melamed MR, Flehinger BJ, Zaman MB, Heelan RT, Perchick WA, Martini N. Screening for early lung cancer. results of the memorial sloan-kettering study In New York. Chest. 1984;86:44–53.CrossRef
13.
go back to reference Wilde J. A 10-year follow-up of semi-annual screening for early detection of lung cancer in the Erfurt County. GDR Eur Respir J. 1989;2:656–862.PubMed Wilde J. A 10-year follow-up of semi-annual screening for early detection of lung cancer in the Erfurt County. GDR Eur Respir J. 1989;2:656–862.PubMed
14.
go back to reference Kubik AK, Khlat M, Erban J, Polak J, Adamec M. Lack of benefit from semi-annual screening for cancer of the lung: follow-up report of a randomized controlled trial on population of high-risk males in Czechoslovakia. Int J Cancer. 1990;45:26–33.CrossRef Kubik AK, Khlat M, Erban J, Polak J, Adamec M. Lack of benefit from semi-annual screening for cancer of the lung: follow-up report of a randomized controlled trial on population of high-risk males in Czechoslovakia. Int J Cancer. 1990;45:26–33.CrossRef
15.
go back to reference Kubık AK, Maxwell Parkin D, Zatloukal P. Czech study on lung cancer screening post-trial follow-up of lung cancer deaths up to year 15 since enrollment. Cancer. 2000;89:2363–8.CrossRef Kubık AK, Maxwell Parkin D, Zatloukal P. Czech study on lung cancer screening post-trial follow-up of lung cancer deaths up to year 15 since enrollment. Cancer. 2000;89:2363–8.CrossRef
16.
go back to reference Oken MM, Hocking WG, Kvale PA, Andriole GL, Buys SS, Church TR, Crawford ED, Fouad N, Isaacs C, Reding DJ, Weissfeld JL, Yokochi LA, O’Brien B, Ragard LR, Rathmell JM, Riley TL, Wright P, Caparaso N, Hu P, Izmirlian G, Pinsky PF, Prorok PC, Kramer BS, Miller AB, Gohagan JK, Berg CD. Screening by chest radiograph and lung cancer mortality: the Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial. JAMA. 2011;306:1865–73.CrossRef Oken MM, Hocking WG, Kvale PA, Andriole GL, Buys SS, Church TR, Crawford ED, Fouad N, Isaacs C, Reding DJ, Weissfeld JL, Yokochi LA, O’Brien B, Ragard LR, Rathmell JM, Riley TL, Wright P, Caparaso N, Hu P, Izmirlian G, Pinsky PF, Prorok PC, Kramer BS, Miller AB, Gohagan JK, Berg CD. Screening by chest radiograph and lung cancer mortality: the Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial. JAMA. 2011;306:1865–73.CrossRef
17.
go back to reference Gohagan JK, Marcus PM, Fagerstrom RM, Pinsky PF, Kramer BS, Prorok PC, et al. Final results of the Lung Screening Study, a randomized feasibility study of spiral CT versus chest X-ray screening for lung cancer. Lung Cancer. 2005;47:9–15.CrossRef Gohagan JK, Marcus PM, Fagerstrom RM, Pinsky PF, Kramer BS, Prorok PC, et al. Final results of the Lung Screening Study, a randomized feasibility study of spiral CT versus chest X-ray screening for lung cancer. Lung Cancer. 2005;47:9–15.CrossRef
18.
go back to reference Aberle DR, DeMello S, Berg CD, Black WC, Brewer B, Church TR, Clingan KL, Duan F, Fagerstrom RM, Gareen IF, Gatsonis CA, Gierada DS, Jain A, Jones GC, Mahon I, Marcus PM, Rathmell JM, Sicks J. Results of the two incidence screenings in the National Lung Screening Trial. N Engl J Med. 2013;369:920–31.CrossRef Aberle DR, DeMello S, Berg CD, Black WC, Brewer B, Church TR, Clingan KL, Duan F, Fagerstrom RM, Gareen IF, Gatsonis CA, Gierada DS, Jain A, Jones GC, Mahon I, Marcus PM, Rathmell JM, Sicks J. Results of the two incidence screenings in the National Lung Screening Trial. N Engl J Med. 2013;369:920–31.CrossRef
19.
go back to reference Infante M, Cavuto S, Lutman FR, Passera E, Chiarenza M, Chiesa G, Brambilla G, Angeli E, Aranzulla G, Chiti A, Scorsetti M, Navarria P, Cavina R, Ciccarelli M, Roncalli M, Destro A, Bottoni E, Voulaz E, Errico V, Ferraroli G, Finocchiaro G, Toschi L, Santoro A, Alloisio M. Long-term follow-up results of the DANTE Trial, a randomized study of lung cancer screening with spiral computed tomography. Am J Respir Crit Care Med. 2015;191:1166–75.CrossRef Infante M, Cavuto S, Lutman FR, Passera E, Chiarenza M, Chiesa G, Brambilla G, Angeli E, Aranzulla G, Chiti A, Scorsetti M, Navarria P, Cavina R, Ciccarelli M, Roncalli M, Destro A, Bottoni E, Voulaz E, Errico V, Ferraroli G, Finocchiaro G, Toschi L, Santoro A, Alloisio M. Long-term follow-up results of the DANTE Trial, a randomized study of lung cancer screening with spiral computed tomography. Am J Respir Crit Care Med. 2015;191:1166–75.CrossRef
20.
go back to reference Paci E, Puliti D, Lopes Pegna A, Carrozzi L, Picozzi G, Falaschi F, Pistelli F, Aquilini F, Ocello C, Zappa M, Carozzi FM, Mascalchi M. Mortality, survival and incidence rates in the ITALUNG randomized lung cancer screening trial. Thorax. 2017;72:825–31.CrossRef Paci E, Puliti D, Lopes Pegna A, Carrozzi L, Picozzi G, Falaschi F, Pistelli F, Aquilini F, Ocello C, Zappa M, Carozzi FM, Mascalchi M. Mortality, survival and incidence rates in the ITALUNG randomized lung cancer screening trial. Thorax. 2017;72:825–31.CrossRef
21.
go back to reference Saghir Z, Dirksen A, Ashraf H, Skjøldstrup Bach K, Brodersen J, Clementsen PF, Døssing M, Hansen H, Kofoed KF, Larsen KR, Mortensen J, Rasmussen JF, Seersholm N, Guldhammer Skov B, Thorsen H, Tønnesen P, Pedersen JH. CT screening for lung cancer brings forward early disease. The randomised Danish Lung Cancer Screening Trial: status after five annual screening rounds with low-dose CT. Thorax 2012; 67: 296e. Saghir Z, Dirksen A, Ashraf H, Skjøldstrup Bach K, Brodersen J, Clementsen PF, Døssing M, Hansen H, Kofoed KF, Larsen KR, Mortensen J, Rasmussen JF, Seersholm N, Guldhammer Skov B, Thorsen H, Tønnesen P, Pedersen JH. CT screening for lung cancer brings forward early disease. The randomised Danish Lung Cancer Screening Trial: status after five annual screening rounds with low-dose CT. Thorax 2012; 67: 296e.
22.
go back to reference Becker N, Motsch E, Trotter A, Heussel CP, Dienemann H, Schnabel PA, Kauczor HU, Maldonado SG, Miller AB, Kaaks R, Delorme S. Lung cancer mortality reduction by LDCT screening—Results from the randomized German LUSI trial. Int J Cancer. 2020;146:1503–13.CrossRef Becker N, Motsch E, Trotter A, Heussel CP, Dienemann H, Schnabel PA, Kauczor HU, Maldonado SG, Miller AB, Kaaks R, Delorme S. Lung cancer mortality reduction by LDCT screening—Results from the randomized German LUSI trial. Int J Cancer. 2020;146:1503–13.CrossRef
23.
go back to reference Sverzellati N, Silva M, Calareso G, Galeone C, Marchianò A, Sestini S, Sozzi G, Pastorino U. Low-dose computed tomography for lung cancer screening: comparison of performance between annual and biennial screen. Eur Radiol. 2016;26:3821–9.CrossRef Sverzellati N, Silva M, Calareso G, Galeone C, Marchianò A, Sestini S, Sozzi G, Pastorino U. Low-dose computed tomography for lung cancer screening: comparison of performance between annual and biennial screen. Eur Radiol. 2016;26:3821–9.CrossRef
24.
go back to reference Pastorino U, Silva M, Sestini S, Sabia F, Boeri M, Cantarutti A, Sverzellati N, Sozzi G, Corrao G, Marchiano A. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy. Ann Oncol. 2019;30:1162–9.CrossRef Pastorino U, Silva M, Sestini S, Sabia F, Boeri M, Cantarutti A, Sverzellati N, Sozzi G, Corrao G, Marchiano A. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy. Ann Oncol. 2019;30:1162–9.CrossRef
25.
go back to reference de Koning HJ, Van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, Lammers JWJ, Weenink C, Yousaf-Khan U, Horeweg N, van Westeinde S, Prokop M, Mali WP, Mohamed Hoesein FAA, van Ooijen PMA, Aerts JGJV, den Bakker MA, Thunnissen E, Verschakelen J, Vliegenthart R, Walter JE, ten Haaf K, Groen HJM, Oudkerk M. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382:503–13.CrossRef de Koning HJ, Van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, Lammers JWJ, Weenink C, Yousaf-Khan U, Horeweg N, van Westeinde S, Prokop M, Mali WP, Mohamed Hoesein FAA, van Ooijen PMA, Aerts JGJV, den Bakker MA, Thunnissen E, Verschakelen J, Vliegenthart R, Walter JE, ten Haaf K, Groen HJM, Oudkerk M. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382:503–13.CrossRef
26.
go back to reference Tao LC. Cytologic diagnosis of radiographically occult squamous cell cancer of the lung. Cancer. 1982;50:1580–6.CrossRef Tao LC. Cytologic diagnosis of radiographically occult squamous cell cancer of the lung. Cancer. 1982;50:1580–6.CrossRef
27.
go back to reference Detterbeck FC, Gibson CJ. Turning gray: the natural history of lung cancer over time. J Thorac Oncol. 2008;3:781–92.CrossRef Detterbeck FC, Gibson CJ. Turning gray: the natural history of lung cancer over time. J Thorac Oncol. 2008;3:781–92.CrossRef
28.
go back to reference Schwartz M. A biomathematical approach to clinical tumor growth. Cancer. 1961;14:1272–94.CrossRef Schwartz M. A biomathematical approach to clinical tumor growth. Cancer. 1961;14:1272–94.CrossRef
29.
go back to reference Woolner LB, Fontana RS, Cortese DA, et al. Roentgenographically occult lung cancer: pathologic findings and frequency of multicentricity during a 10-year period. Mayo Clin Proc. 1984;59:453–66.CrossRef Woolner LB, Fontana RS, Cortese DA, et al. Roentgenographically occult lung cancer: pathologic findings and frequency of multicentricity during a 10-year period. Mayo Clin Proc. 1984;59:453–66.CrossRef
30.
go back to reference Liu R, Perez A, Wu D. The lead time distribution in the National Lung Screening Liu R, Perez A, Wu D. The lead time distribution in the National Lung Screening
31.
go back to reference Trial study. Journal of Healthcare Informatics Research 2018; 2: 353–366. Trial study. Journal of Healthcare Informatics Research 2018; 2: 353–366.
32.
go back to reference Wu D, Kafadar K, Rosner GL, Broemeling LD. The Lead Time Distribution When Lifetime is Subject to Competing Risks in Cancer Screening. The International Journal of Biostatistics. 2012; 8: Iss. 1, Article 6. Wu D, Kafadar K, Rosner GL, Broemeling LD. The Lead Time Distribution When Lifetime is Subject to Competing Risks in Cancer Screening. The International Journal of Biostatistics. 2012; 8: Iss. 1, Article 6.
33.
go back to reference Mets OM, Chung K, Zanen P, Scholten ET, Veldhuis WB, van Ginneken B, Prokop M, Schaefer-Prokop CM, de Jong PA. In vivo growth of 60 non-screening detected lung cancers: a computed tomography study. Eur Respir J. 2018;4:51. Mets OM, Chung K, Zanen P, Scholten ET, Veldhuis WB, van Ginneken B, Prokop M, Schaefer-Prokop CM, de Jong PA. In vivo growth of 60 non-screening detected lung cancers: a computed tomography study. Eur Respir J. 2018;4:51.
35.
go back to reference Sato M, Saito Y, Endo C, Sakurada A, Feller-Kopman D, Ernst A, Kondo T. The natural history of radiographically occult bronchogenic squamous cell carcinoma: a retrospective study of overdiagnosis bias. Chest. 2004;126:108–13.CrossRef Sato M, Saito Y, Endo C, Sakurada A, Feller-Kopman D, Ernst A, Kondo T. The natural history of radiographically occult bronchogenic squamous cell carcinoma: a retrospective study of overdiagnosis bias. Chest. 2004;126:108–13.CrossRef
36.
go back to reference Sobue T, Suzuki T, Matsuda M, Kuroishi T, Ikeda S, Naruke T, and The Japanese Lung Cancer Screening Research Group. Survival for Clinical Stage I Lung Cancer Not Surgically Treated Comparison between Screen-Detected and Symptom-Detected Cases. Cancer 1992, 69: 685–692. Sobue T, Suzuki T, Matsuda M, Kuroishi T, Ikeda S, Naruke T, and The Japanese Lung Cancer Screening Research Group. Survival for Clinical Stage I Lung Cancer Not Surgically Treated Comparison between Screen-Detected and Symptom-Detected Cases. Cancer 1992, 69: 685–692.
37.
go back to reference Bach PB. Is our natural-history model of lung cancer wrong? Lancet Oncol. 2008;9:693–7.CrossRef Bach PB. Is our natural-history model of lung cancer wrong? Lancet Oncol. 2008;9:693–7.CrossRef
Metadata
Title
Duration of lead time in screening for lung cancer
Author
Jochanan Benbassat
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2021
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-020-01385-3

Other articles of this Issue 1/2021

BMC Pulmonary Medicine 1/2021 Go to the issue