Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2019

Open Access 01-12-2019 | Isoniazid | Study protocol

Longitudinal profiling of gut microbiome among tuberculosis patients under anti-tuberculosis treatment in China: protocol of a prospective cohort study

Authors: Wenpei Shi, Yi Hu, Xubin Zheng, Zhu Ning, Meiying Wu, Fan Xia, Stefanie Prast-Nielsen, Yue O. O. Hu, Biao Xu

Published in: BMC Pulmonary Medicine | Issue 1/2019

Login to get access

Abstract

Background

Anti-tuberculosis therapy requires at least six-month treatment with continuous administration of combined antibiotics, including isoniazid, rifampicin, pyrazinamide, and ethambutol. The long-term exposure to antibiotics could cause consequent changes in gut microbiota, which may alter the gastrointestinal function and drug absorption in patients, thereby affect the outcome of treatment. The study aims to characterize the longitudinal changes of gut microbiota among tuberculosis (TB) patients under standardized first-line treatment and provide an understanding of the association between alterations in gut microbiota composition and unfavorable clinical outcomes.

Methods

The study is a multicenter, observational prospective cohort study. Three study sites are purposively selected in the western (Sichuan Province) and eastern (Jiangsu Province and Shanghai) parts of China. Three-hundred patients with bacteriologically confirmed pulmonary TB are enrolled. All eligible patients should be investigated using structured questionnaires before treatment initiation; and be followed up during the treatment at Day-14, Month-2, Month-5, the end of treatment and the sixth month after ending therapy. Stool samples are to be collected at each visit, consisting of six stool samples from each patient. Additionally, 60 healthy volunteers from Sichuan province and Shanghai city will be recruited as healthy controls to form the baseline of patient gut microbiota in the Chinese population. The dynamic changes of gut microbiota in terms of alpha diversity, beta diversity, taxonomic composition are to be illustrated individually from the time at diagnosis until the sixth month after therapy is completed. Furthermore, the diversity and component of gut microbiota will be compared between the groups with and without unfavorable treatment outcome in terms of adverse effect and treatment failure.

Discussion

Studies on the clinical manifestations, adverse reactions, and gut microbiota alterations will provide scientifically-sound evidence on the impact of gut microbiota alterations on TB treatment outcomes. The study is not only useful for guiding personalized TB treatment but also sheds light on the effects of continuous antibiotics administration on gut microbiota.

Trial registration

Chinese Clinical Trial Registry, trial ID: ChiCTR1900023369​, May 24, 2019. Retrospectively registered.
Literature
1.
go back to reference Organization WH. Global tuberculosis report 2018. Geneva: World Health Organization; 2018; 2018. Organization WH. Global tuberculosis report 2018. Geneva: World Health Organization; 2018; 2018.
2.
go back to reference Zhang Y, Wu S, Xia Y, Wang N, Zhou L, Wang J, Fang R, Sun F, Chen M, Zhan S. Adverse events associated with treatment of multidrug-resistant tuberculosis in China: an Ambispective cohort study. Med Sci Monit. 2017;23:2348–56.CrossRef Zhang Y, Wu S, Xia Y, Wang N, Zhou L, Wang J, Fang R, Sun F, Chen M, Zhan S. Adverse events associated with treatment of multidrug-resistant tuberculosis in China: an Ambispective cohort study. Med Sci Monit. 2017;23:2348–56.CrossRef
3.
go back to reference Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.CrossRef Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.CrossRef
4.
go back to reference Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51.CrossRef Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51.CrossRef
5.
go back to reference Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392–400.CrossRef Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392–400.CrossRef
6.
go back to reference Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39.CrossRef Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39.CrossRef
7.
go back to reference Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile—associated diarrhea. J Infect Dis. 2008;197(3):435–8.CrossRef Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile—associated diarrhea. J Infect Dis. 2008;197(3):435–8.CrossRef
8.
go back to reference Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun. 2012;80(1):62–73.CrossRef Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun. 2012;80(1):62–73.CrossRef
9.
go back to reference Raymond F, Ouameur AA, Deraspe M, Iqbal N, Gingras H, Dridi B, Leprohon P, Plante PL, Giroux R, Berube E, et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J. 2016;10(3):707–20.CrossRef Raymond F, Ouameur AA, Deraspe M, Iqbal N, Gingras H, Dridi B, Leprohon P, Plante PL, Giroux R, Berube E, et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J. 2016;10(3):707–20.CrossRef
10.
go back to reference Naidoo CC, Nyawo GR, Wu BG, Walzl G, Warren RM, Segal LN, Theron G. The microbiome and tuberculosis: state of the art, potential applications, and defining the clinical research agenda. Lancet Respir Med. 2019;7:892–906.CrossRef Naidoo CC, Nyawo GR, Wu BG, Walzl G, Warren RM, Segal LN, Theron G. The microbiome and tuberculosis: state of the art, potential applications, and defining the clinical research agenda. Lancet Respir Med. 2019;7:892–906.CrossRef
11.
go back to reference Lv X, Tang S, Xia Y, Wang X, Yuan Y, Hu D, Liu F, Wu S, Zhang Y, Yang Z, et al. Adverse reactions due to directly observed treatment strategy therapy in Chinese tuberculosis patients: a prospective study. PLoS One. 2013;8(6):e65037.CrossRef Lv X, Tang S, Xia Y, Wang X, Yuan Y, Hu D, Liu F, Wu S, Zhang Y, Yang Z, et al. Adverse reactions due to directly observed treatment strategy therapy in Chinese tuberculosis patients: a prospective study. PLoS One. 2013;8(6):e65037.CrossRef
12.
go back to reference Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 2016;22(6):458–78.CrossRef Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 2016;22(6):458–78.CrossRef
13.
go back to reference Wipperman MF, Fitzgerald DW, Juste MAJ, Taur Y, Namasivayam S, Sher A, Bean JM, Bucci V, Glickman MS. Antibiotic treatment for tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep. 2017;7(1):10767.CrossRef Wipperman MF, Fitzgerald DW, Juste MAJ, Taur Y, Namasivayam S, Sher A, Bean JM, Bucci V, Glickman MS. Antibiotic treatment for tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep. 2017;7(1):10767.CrossRef
14.
go back to reference Hu Y, Yang Q, Liu B, Dong J, Sun L, Zhu Y, Su H, Yang J, Yang F, Chen X, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infection. 2018;78(4):317–22.CrossRef Hu Y, Yang Q, Liu B, Dong J, Sun L, Zhu Y, Su H, Yang J, Yang F, Chen X, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infection. 2018;78(4):317–22.CrossRef
15.
go back to reference Luo M, Liu Y, Wu P, Luo DX, Sun Q, Zheng H, Hu R, Pandol SJ, Li QF, Han YP, et al. Alternation of gut microbiota in patients with pulmonary tuberculosis. Front Physiol. 2017;8:822.CrossRef Luo M, Liu Y, Wu P, Luo DX, Sun Q, Zheng H, Hu R, Pandol SJ, Li QF, Han YP, et al. Alternation of gut microbiota in patients with pulmonary tuberculosis. Front Physiol. 2017;8:822.CrossRef
16.
go back to reference Yearbook CS: China statistical Yearbook 2018; 2019. Yearbook CS: China statistical Yearbook 2018; 2019.
21.
go back to reference Vázquez-Baeza Y, Gonzalez A, Xu ZZ, Washburne A, Herfarth HH, Sartor RB, Knight R. Guiding longitudinal sampling in IBD cohorts. Gut. 2017;67(9):1743–45.CrossRef Vázquez-Baeza Y, Gonzalez A, Xu ZZ, Washburne A, Herfarth HH, Sartor RB, Knight R. Guiding longitudinal sampling in IBD cohorts. Gut. 2017;67(9):1743–45.CrossRef
22.
go back to reference Brummaier T, Syed Ahamed Kabeer B, Lindow S, Konje JC, Pukrittayaamee S, Utzinger J, Toufiq M, Antoniou A, Marr AK, Suriyakan S, et al. A prospective cohort for the investigation of alteration in temporal transcriptional and microbiome trajectories preceding preterm birth: a study protocol. BMJ Open. 2019;9(1):e023417.CrossRef Brummaier T, Syed Ahamed Kabeer B, Lindow S, Konje JC, Pukrittayaamee S, Utzinger J, Toufiq M, Antoniou A, Marr AK, Suriyakan S, et al. A prospective cohort for the investigation of alteration in temporal transcriptional and microbiome trajectories preceding preterm birth: a study protocol. BMJ Open. 2019;9(1):e023417.CrossRef
23.
go back to reference Troeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SRM, Albertson SB, Stanaway JD, Deshpande A, Abebe Z, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the global burden of disease study 2016. Lancet Infect Dis. 2018;18(11):1211–28.CrossRef Troeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SRM, Albertson SB, Stanaway JD, Deshpande A, Abebe Z, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the global burden of disease study 2016. Lancet Infect Dis. 2018;18(11):1211–28.CrossRef
24.
go back to reference Wejse C, Gustafson P, Nielsen J, Gomes VF, Aaby P, Andersen PL, Sodemann M. TBscore: signs and symptoms from tuberculosis patients in a low-resource setting have predictive value and may be used to assess clinical course. Scand J Infect Dis. 2008;40(2):111–20.CrossRef Wejse C, Gustafson P, Nielsen J, Gomes VF, Aaby P, Andersen PL, Sodemann M. TBscore: signs and symptoms from tuberculosis patients in a low-resource setting have predictive value and may be used to assess clinical course. Scand J Infect Dis. 2008;40(2):111–20.CrossRef
25.
go back to reference Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.CrossRef Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.CrossRef
26.
go back to reference Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28(14):1823–9.CrossRef Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28(14):1823–9.CrossRef
27.
go back to reference Mcardle BH, Anderson MJJE. Fitting Multivariate Models to Community Data: A Comment on Distance-Based Redundancy Analysis. Ecology. 2001;82(1):290–97.CrossRef Mcardle BH, Anderson MJJE. Fitting Multivariate Models to Community Data: A Comment on Distance-Based Redundancy Analysis. Ecology. 2001;82(1):290–97.CrossRef
28.
go back to reference Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JSJTE. Evolutieon: Generalized linear mixed models: a practical guide for ecology and evolution. Cell Press. 2009;24(3):127–35.CrossRef Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JSJTE. Evolutieon: Generalized linear mixed models: a practical guide for ecology and evolution. Cell Press. 2009;24(3):127–35.CrossRef
29.
go back to reference Bokulich N, Zhang Y, Dillon M, Rideout JR, Bolyen E, Li H, Albert P, Caporaso JG. q2-longitudinal: a QIIME 2 plugin for longitudinal and paired-sample analyses of microbiome data; 2017. Bokulich N, Zhang Y, Dillon M, Rideout JR, Bolyen E, Li H, Albert P, Caporaso JG. q2-longitudinal: a QIIME 2 plugin for longitudinal and paired-sample analyses of microbiome data; 2017.
30.
go back to reference Chi CM, Chung JW, Kozyrakis C, Olukotun K. STAMP: Stanford transactional applications for multi-processing. In: IEEE International Symposium on Workload Characterization; 2008. p. 2008. Chi CM, Chung JW, Kozyrakis C, Olukotun K. STAMP: Stanford transactional applications for multi-processing. In: IEEE International Symposium on Workload Characterization; 2008. p. 2008.
31.
go back to reference Makarenkov V, Legendre PJE. Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression. Ecology. 2002;83(4):1146–61.CrossRef Makarenkov V, Legendre PJE. Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression. Ecology. 2002;83(4):1146–61.CrossRef
33.
go back to reference Hong BY, Maulen NP, Adami AJ, Granados H, Balcells ME, Cervantes J. Microbiome changes during tuberculosis and Antituberculous therapy. Clin Microbiol Rev. 2016;29(4):915–26.CrossRef Hong BY, Maulen NP, Adami AJ, Granados H, Balcells ME, Cervantes J. Microbiome changes during tuberculosis and Antituberculous therapy. Clin Microbiol Rev. 2016;29(4):915–26.CrossRef
34.
go back to reference Maji A, Misra R, Dhakan DB, Gupta V, Mahato NK, Saxena R, Mittal P, Thukral N, Sharma E, Singh A, et al. Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol. 2018;20(1):402–19.CrossRef Maji A, Misra R, Dhakan DB, Gupta V, Mahato NK, Saxena R, Mittal P, Thukral N, Sharma E, Singh A, et al. Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol. 2018;20(1):402–19.CrossRef
Metadata
Title
Longitudinal profiling of gut microbiome among tuberculosis patients under anti-tuberculosis treatment in China: protocol of a prospective cohort study
Authors
Wenpei Shi
Yi Hu
Xubin Zheng
Zhu Ning
Meiying Wu
Fan Xia
Stefanie Prast-Nielsen
Yue O. O. Hu
Biao Xu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2019
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-019-0981-9

Other articles of this Issue 1/2019

BMC Pulmonary Medicine 1/2019 Go to the issue