Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2016

Open Access 01-12-2016 | Research article

Receiver operating characteristics of impulse oscillometry parameters for predicting obstructive sleep apnea in preobese and obese snorers

Authors: Arikin Abdeyrim, Liang Tang, Arzugl Muhamat, Kelimu Abudeyrim, YongPing Zhang, NanFang Li, Yinchun Wang, Minghua Zhao

Published in: BMC Pulmonary Medicine | Issue 1/2016

Login to get access

Abstract

Background

Inability to maintain upper-airway patency during sleep is a cause of obstructive sleep apnea (OSA) and its sequelae. The associated syndrome (OSAS) is common in obese populations, currently, nocturnal polysomnography is the gold standard for diagnosing this conditions, but the diagnostic procedures are expensive and time-consuming. Therefore, identification of new markers of OSAS would be useful. This study aims to examine the receiver operating characteristics of impulse oscillometry (IOS) parameters for the prediction of OSAS in preobese and obese snoring patients.

Methods

In total, 230 patients with normal spirometric values were included in this cross-sectional study. Full laboratory polysomnography was performed and IOS measurements were determined in sitting and supine positions to obtain respiratory impedance (Zrs), resistance (Rrs), and reactance (Xrs) parameters. The respiratory resistance at zero-frequency (Rrs0) was extrapolated by linear regression analysis of Rrs versus low-oscillatory-frequencies and its inverse, respiratory conductance (Grs), was calculated.

Results

In both the sitting and supine positions Rrs0, Zrs, and Rrs at five oscillatory-frequencies (Hz) and Grs, the reciprocal of Zrs5 (Gz), and Xrs at 5 Hz all had significant positive or negative correlations with OSAS severity as defined by the Respiratory disturbance index (RDI). The correlation coefficients between Rrs0, Zrs5, Rrs5, Grs, Gz, Xrs5 measured in the supine and RDI were 0.425, 0.395, 0.378, −0.425, −0.395, and −0.517, respectively (all p < 0.001). The receiver operating characteristics curves showed that Xrs at 5 Hz (reactance) in the supine position was the best for predicting OSAS with a sensitivity of 73 % and specificity of 84 % at the optimal cut-off point of −0.23 (kPa s L−1). The other parameters also showed acceptable discriminating power. A logistic-regression model based on respiratory function abnormalities revealed that reactance combined with patient sex and lung volume yielded a specificity of 83.3 % with a sensitivity of 76.8 % for indicating OSAS.

Conclusion

Respiratory resistance and reactance measured by IOS are abnormal in preobese and obese OSAS patients, and these parameters are moderate to closely correlated with OSAS severity. IOS might be a useful screening tool for detecting OSAS in clinic based populations.
Literature
1.
go back to reference Stanchina ML, Malhotra A, Fogel RB, Trinder J, Edwards JK, Schory K, White DP. The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus muscle activation during sleep. Sleep. 2003;7:851–6. Stanchina ML, Malhotra A, Fogel RB, Trinder J, Edwards JK, Schory K, White DP. The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus muscle activation during sleep. Sleep. 2003;7:851–6.
2.
go back to reference Bijaoui EL, Champagne V, Baconnier PF, et al. Mechanical properties of the lung and upper airways in patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2002;165:1055–61.CrossRefPubMed Bijaoui EL, Champagne V, Baconnier PF, et al. Mechanical properties of the lung and upper airways in patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2002;165:1055–61.CrossRefPubMed
3.
go back to reference Stradling JR, Barbour C, Glennon J, et al. Which aspects of breathing during sleep influence the overnight fall of blood pressure in a community population. Thorax. 2000;55:393–8.CrossRefPubMedPubMedCentral Stradling JR, Barbour C, Glennon J, et al. Which aspects of breathing during sleep influence the overnight fall of blood pressure in a community population. Thorax. 2000;55:393–8.CrossRefPubMedPubMedCentral
4.
go back to reference Morgan BJ, Reichmuth KJ, Peppard PE, et al. Effects of sleep-disordered breathing on cerebrovascular regulation: a population-based study. Am J Respir Crit Care Med. 2010;182:1445–52.CrossRefPubMedPubMedCentral Morgan BJ, Reichmuth KJ, Peppard PE, et al. Effects of sleep-disordered breathing on cerebrovascular regulation: a population-based study. Am J Respir Crit Care Med. 2010;182:1445–52.CrossRefPubMedPubMedCentral
5.
go back to reference Yaggi HK, Concato J, Kernan WN, et al. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005;353:2034–41.CrossRefPubMed Yaggi HK, Concato J, Kernan WN, et al. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005;353:2034–41.CrossRefPubMed
6.
go back to reference Verin E, Tardif C, Portier F, Similowski T, Pasquis P, Muir JF. Evidence for expiratory flow limitation of extrathoracic origin in patients with obstructive sleep apnoea. Thorax. 2002;57:423–8.CrossRefPubMedPubMedCentral Verin E, Tardif C, Portier F, Similowski T, Pasquis P, Muir JF. Evidence for expiratory flow limitation of extrathoracic origin in patients with obstructive sleep apnoea. Thorax. 2002;57:423–8.CrossRefPubMedPubMedCentral
7.
go back to reference Van Meerhaeghe A, Delpire P, Stenuit P, et al. Operating characteristics of the negative expiratory pressure technique in predicting obstructive sleep apnoea syndrome in snoring patients. Thorax. 2004;59:883–8.CrossRefPubMedPubMedCentral Van Meerhaeghe A, Delpire P, Stenuit P, et al. Operating characteristics of the negative expiratory pressure technique in predicting obstructive sleep apnoea syndrome in snoring patients. Thorax. 2004;59:883–8.CrossRefPubMedPubMedCentral
8.
go back to reference Van Noord JA, Wellens W, Clarysse I, et al. Total respiratory resistance and reactance in patients with upper airway obstruction. Chest. 1987;92:475–80.CrossRefPubMed Van Noord JA, Wellens W, Clarysse I, et al. Total respiratory resistance and reactance in patients with upper airway obstruction. Chest. 1987;92:475–80.CrossRefPubMed
9.
go back to reference Zerah F, Harf A, Perlemuter L, et al. Effects of obesity on respiratory resistance. Chest. 1993;103:1470–6.CrossRefPubMed Zerah F, Harf A, Perlemuter L, et al. Effects of obesity on respiratory resistance. Chest. 1993;103:1470–6.CrossRefPubMed
10.
go back to reference Zerah-Lancner F, Lofaso F, Coste A, et al. Pulmonary function in obese snorers with or without sleep apnea syndrome. Am J Respir Crit Care Med. 1997;156:522–7.CrossRefPubMed Zerah-Lancner F, Lofaso F, Coste A, et al. Pulmonary function in obese snorers with or without sleep apnea syndrome. Am J Respir Crit Care Med. 1997;156:522–7.CrossRefPubMed
11.
go back to reference Zerah-Lancner F, Lofaso F, d'Ortho MP, et al. Predictive value of pulmonary function parameters for sleep apnea syndrome. Am J Respir Crit Care Med. 2000;162:2208–12.CrossRefPubMed Zerah-Lancner F, Lofaso F, d'Ortho MP, et al. Predictive value of pulmonary function parameters for sleep apnea syndrome. Am J Respir Crit Care Med. 2000;162:2208–12.CrossRefPubMed
12.
go back to reference Owens RL, Malhotra A, Eckert DJ, White DP, Jordan AS. The influence of end-expiratory lung volume on measurements of pharyngeal collapsibility. J Appl Physiol. 2010;108:445–51.CrossRefPubMed Owens RL, Malhotra A, Eckert DJ, White DP, Jordan AS. The influence of end-expiratory lung volume on measurements of pharyngeal collapsibility. J Appl Physiol. 2010;108:445–51.CrossRefPubMed
13.
go back to reference Tagaito Y, Isono S, Remmers JE, Tanaka A, Nishino T. Lung volume and collapsibility of the passive pharynx in patients with sleep-disordered breathing. J Appl Physiol. 2007;103:1379–85.CrossRefPubMed Tagaito Y, Isono S, Remmers JE, Tanaka A, Nishino T. Lung volume and collapsibility of the passive pharynx in patients with sleep-disordered breathing. J Appl Physiol. 2007;103:1379–85.CrossRefPubMed
14.
go back to reference Lorino AM, Hamoudi K, Lofaso F, Dahan E, Mariette C, Harf A, Lorino H. Effects of continuous negative airway pressure on lung volume and respiratory resistance. J Appl Physiol. 1999;87:605–10.PubMed Lorino AM, Hamoudi K, Lofaso F, Dahan E, Mariette C, Harf A, Lorino H. Effects of continuous negative airway pressure on lung volume and respiratory resistance. J Appl Physiol. 1999;87:605–10.PubMed
16.
go back to reference Hellinckx J, Cauberghs M, De Boeck K, Demedts M. Evaluation of impulse oscillation system: comparison with forced oscillation technique and body plethysmography. EurRespir J. 2001;18:564–70.CrossRef Hellinckx J, Cauberghs M, De Boeck K, Demedts M. Evaluation of impulse oscillation system: comparison with forced oscillation technique and body plethysmography. EurRespir J. 2001;18:564–70.CrossRef
17.
go back to reference Oksenberg A, Silverberg DS, Arons E, Radwan H. Positional vs nonpositional obstructive sleep apnea patients: anthropomorphic, nocturnal polysomnographic, and multiple sleep latency test data. Chest. 1997;112:629–39.CrossRefPubMed Oksenberg A, Silverberg DS, Arons E, Radwan H. Positional vs nonpositional obstructive sleep apnea patients: anthropomorphic, nocturnal polysomnographic, and multiple sleep latency test data. Chest. 1997;112:629–39.CrossRefPubMed
18.
go back to reference Joosten SA, Hamza K, Sands S, Turton A, Berger P, Hamilton G. Phenotypes of patients with mild to moderate obstructive sleep apnoea as confirmed by cluster analysis. Respirology. 2012;17:99–107.CrossRefPubMed Joosten SA, Hamza K, Sands S, Turton A, Berger P, Hamilton G. Phenotypes of patients with mild to moderate obstructive sleep apnoea as confirmed by cluster analysis. Respirology. 2012;17:99–107.CrossRefPubMed
19.
go back to reference Joosten SA, Sands SA, Edwards BA, Hamza K, et al. Valuation of the role of lung volume and airway size and shape in supine-predominant obstruct ive sleepapnoea patients. Respirology. 2015;20:819–27. doi:10.1111/resp.12549.CrossRefPubMed Joosten SA, Sands SA, Edwards BA, Hamza K, et al. Valuation of the role of lung volume and airway size and shape in supine-predominant obstruct ive sleepapnoea patients. Respirology. 2015;20:819–27. doi:10.​1111/​resp.​12549.CrossRefPubMed
20.
go back to reference American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine; 2014. American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine; 2014.
21.
go back to reference Oostveen E, MacLeod D, Lorino H, Farre R, Hantos Z, Desager K, Marchal F. The forced oscillation technique in clinical practice:methodology, recommendations and future developments. EurRespir J. 2003;22:1026–41.CrossRef Oostveen E, MacLeod D, Lorino H, Farre R, Hantos Z, Desager K, Marchal F. The forced oscillation technique in clinical practice:methodology, recommendations and future developments. EurRespir J. 2003;22:1026–41.CrossRef
22.
go back to reference Cao J, Que C, Wang G, He B. Effect of posture on airway resistance in obstructive sleep apnea-hypopnea syndrome by means of impulse oscillation. Respiration. 2009;77:38–43. doi:10.1159/000114146.CrossRefPubMed Cao J, Que C, Wang G, He B. Effect of posture on airway resistance in obstructive sleep apnea-hypopnea syndrome by means of impulse oscillation. Respiration. 2009;77:38–43. doi:10.​1159/​000114146.CrossRefPubMed
23.
go back to reference Lorino AM, Atlan G, Lorino H, Zanditenas D, Harf A. Influence of posture on mechanical parameters derived from respiratory impedance. Eur Respir J. 1992;5:1118–22.PubMed Lorino AM, Atlan G, Lorino H, Zanditenas D, Harf A. Influence of posture on mechanical parameters derived from respiratory impedance. Eur Respir J. 1992;5:1118–22.PubMed
24.
go back to reference Watson RA, Pride NB. Postural changes in lung volumes and respiratory resistance in subjects with obesity. J Appl Physiol. 2005;98:512–7.CrossRefPubMed Watson RA, Pride NB. Postural changes in lung volumes and respiratory resistance in subjects with obesity. J Appl Physiol. 2005;98:512–7.CrossRefPubMed
25.
go back to reference Yap JC, Watson RA, Gilbey S, et al. Effects of posture on respiratory mechanics in obesity. J Appl Physiol. 1995;79:1199–205.PubMed Yap JC, Watson RA, Gilbey S, et al. Effects of posture on respiratory mechanics in obesity. J Appl Physiol. 1995;79:1199–205.PubMed
26.
go back to reference Babb TG, Wyrick BL, DeLorey DS, et al. Fat distribution and end-expiratory lung volume in lean and obese men and women. Chest. 2008;134:704–11.CrossRefPubMed Babb TG, Wyrick BL, DeLorey DS, et al. Fat distribution and end-expiratory lung volume in lean and obese men and women. Chest. 2008;134:704–11.CrossRefPubMed
27.
go back to reference Jones RL, Nzekwu MM, et al. The effects of body mass index on lung volumes. Chest. 2006;130:827–33.CrossRefPubMed Jones RL, Nzekwu MM, et al. The effects of body mass index on lung volumes. Chest. 2006;130:827–33.CrossRefPubMed
28.
go back to reference Pelosi P, Croci M, Ravagnan I, et al. The effects of body mass on lung volumes, respiratory mechanics, and Gas exchange during general. Anesthesia. Anesth Analg. 1998;87:654–60.PubMed Pelosi P, Croci M, Ravagnan I, et al. The effects of body mass on lung volumes, respiratory mechanics, and Gas exchange during general. Anesthesia. Anesth Analg. 1998;87:654–60.PubMed
29.
go back to reference Squier SB, Patil SP, Schneider H, Kirkness JP, Smith PL, Schwartz AR. Effect of end-expiratory lung volume on upper airway collapsibility in sleeping men and women. J Appl Physiol. 2010;109:977–85.CrossRefPubMedPubMedCentral Squier SB, Patil SP, Schneider H, Kirkness JP, Smith PL, Schwartz AR. Effect of end-expiratory lung volume on upper airway collapsibility in sleeping men and women. J Appl Physiol. 2010;109:977–85.CrossRefPubMedPubMedCentral
30.
go back to reference Lorino AM, Lofaso F, Dahan E, Harf A, Lorino H. Respiratory impedance response to continuous negative airway pressure in awake controls and OSAS. EurRespir J. 2001;17:71–8.CrossRef Lorino AM, Lofaso F, Dahan E, Harf A, Lorino H. Respiratory impedance response to continuous negative airway pressure in awake controls and OSAS. EurRespir J. 2001;17:71–8.CrossRef
31.
go back to reference Isono S. Obstructive sleep apnea of obese adults: pathophysiology and perioperative airway management. Anesthesiology. 2009;110:908–21.CrossRefPubMed Isono S. Obstructive sleep apnea of obese adults: pathophysiology and perioperative airway management. Anesthesiology. 2009;110:908–21.CrossRefPubMed
32.
go back to reference Suratt PM, Wilhoit SC, Hsiao HS, Atkinson RL, Rochester DF. Compliance of chest wall in obese subjects. J Appl Physiol. 1984;57:403–7.PubMed Suratt PM, Wilhoit SC, Hsiao HS, Atkinson RL, Rochester DF. Compliance of chest wall in obese subjects. J Appl Physiol. 1984;57:403–7.PubMed
33.
go back to reference Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest. 1996;109:144–51.CrossRefPubMed Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest. 1996;109:144–51.CrossRefPubMed
34.
go back to reference Behazin N, Jones SB, Cohen RI, Loring SH. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol. 2010;108:212–8.CrossRefPubMed Behazin N, Jones SB, Cohen RI, Loring SH. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol. 2010;108:212–8.CrossRefPubMed
35.
go back to reference Liistro G, Veriter C, Dury M, et al. Expiratory flow limitation in awake sleep disordered breathing subjects. Eur Respir J. 1999;14:185–90.CrossRefPubMed Liistro G, Veriter C, Dury M, et al. Expiratory flow limitation in awake sleep disordered breathing subjects. Eur Respir J. 1999;14:185–90.CrossRefPubMed
36.
go back to reference Tantucci C, Duguet A, Ferreti A, et al. Effect of negative expiratory pressure on respiratory system flow resistance in awake snorers and nonsnorers. J Appl Physiol. 1999;87:969–76.PubMed Tantucci C, Duguet A, Ferreti A, et al. Effect of negative expiratory pressure on respiratory system flow resistance in awake snorers and nonsnorers. J Appl Physiol. 1999;87:969–76.PubMed
37.
go back to reference Baydur A, Wilkinson L, Mehdian R, Bains B, Milic-Emili J. Extrathoracic expiratory flow limitation in obesity and obstructive and restrictive disorders: effects of increasing negative expiratory pressure. Chest. 2004;125:98–105.CrossRefPubMed Baydur A, Wilkinson L, Mehdian R, Bains B, Milic-Emili J. Extrathoracic expiratory flow limitation in obesity and obstructive and restrictive disorders: effects of increasing negative expiratory pressure. Chest. 2004;125:98–105.CrossRefPubMed
38.
go back to reference Insalaco G, Romano S, Marrone O, Salvaggio A, Bonsignore G. A new method of negative expiratory pressure test analysis detecting upper airway flow limitation to reveal obstructive sleep apnea. Chest. 2005;128:2159–65.CrossRefPubMed Insalaco G, Romano S, Marrone O, Salvaggio A, Bonsignore G. A new method of negative expiratory pressure test analysis detecting upper airway flow limitation to reveal obstructive sleep apnea. Chest. 2005;128:2159–65.CrossRefPubMed
39.
go back to reference Dellaca RL, Santus P, Aliverti A, et al. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J. 2004;23:232–40.CrossRefPubMed Dellaca RL, Santus P, Aliverti A, et al. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J. 2004;23:232–40.CrossRefPubMed
40.
go back to reference Dellaca RL, Duffy N, Pompilio PP, et al. Expiratory flow limitation detected by forced oscillation and negative expiratory pressure. Eur Respir J. 2007;29:363–74.CrossRefPubMed Dellaca RL, Duffy N, Pompilio PP, et al. Expiratory flow limitation detected by forced oscillation and negative expiratory pressure. Eur Respir J. 2007;29:363–74.CrossRefPubMed
41.
go back to reference Kolsum U, Borrill Z, Roy K, Starkey C, Vestbo J, Houghton C, Singh D. Impulse oscillometry in COPD: identification of measurements related to airway obstruction, airway conductance and lung volumes. Respir Med. 2009;103:136–43.CrossRefPubMed Kolsum U, Borrill Z, Roy K, Starkey C, Vestbo J, Houghton C, Singh D. Impulse oscillometry in COPD: identification of measurements related to airway obstruction, airway conductance and lung volumes. Respir Med. 2009;103:136–43.CrossRefPubMed
42.
go back to reference Kanda S, Fujimoto K, Komatsu Y, Yasuo M, Hanaoka M, Kubo K. Evaluation of respiratory impedance in asthma and COPD by an impulse oscillation system. Intern Med. 2010;49:23–30.CrossRefPubMed Kanda S, Fujimoto K, Komatsu Y, Yasuo M, Hanaoka M, Kubo K. Evaluation of respiratory impedance in asthma and COPD by an impulse oscillation system. Intern Med. 2010;49:23–30.CrossRefPubMed
43.
go back to reference Young T, Palta M, Dempsey J, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5.CrossRefPubMed Young T, Palta M, Dempsey J, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5.CrossRefPubMed
Metadata
Title
Receiver operating characteristics of impulse oscillometry parameters for predicting obstructive sleep apnea in preobese and obese snorers
Authors
Arikin Abdeyrim
Liang Tang
Arzugl Muhamat
Kelimu Abudeyrim
YongPing Zhang
NanFang Li
Yinchun Wang
Minghua Zhao
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2016
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-016-0284-3

Other articles of this Issue 1/2016

BMC Pulmonary Medicine 1/2016 Go to the issue