Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2016

Open Access 01-12-2016 | Research article

Mycobacteria infect different cell types in the human lung and cause species dependent cellular changes in infected cells

Authors: Dariimaa Ganbat, Sophie Seehase, Elvira Richter, Ekkehard Vollmer, Norbert Reiling, Kurt Fellenberg, Karoline I. Gaede, Christian Kugler, Torsten Goldmann

Published in: BMC Pulmonary Medicine | Issue 1/2016

Login to get access

Abstract

Background

Mycobacterial infections remain a significant cause of morbidity and mortality worldwide. Due to limitations of the currently available model systems, there are still comparably large gaps in the knowledge about the pathogenesis of these chronic inflammatory diseases in particular with regard to the human host. Therefore, we aimed to characterize the initial phase of mycobacterial infections utilizing a human ex vivo lung tissue culture model designated STST (Short-Term Stimulation of Tissues).

Methods

Human lung tissues from 65 donors with a size of 0.5–1 cm3 were infected each with two strains of three different mycobacterial species (M. tuberculosis, M. avium, and M. abscessus), respectively. In order to preserve both morphology and nucleic acids, the HOPE® fixation technique was used. The infected tissues were analyzed using histo- and molecular-pathological methods. Immunohistochemistry was applied to identify the infected cell types.

Results

Morphologic comparisons between ex vivo incubated and non-incubated lung specimens revealed no noticeable differences. Viability of ex vivo stimulated tissues demonstrated by TUNEL-assay was acceptable. Serial sections verified sufficient diffusion of the infectious agents deep into the tissues. Infection was confirmed by Ziel Neelsen-staining and PCR to detect mycobacterial DNA. We observed the infection of different cell types, including macrophages, neutrophils, monocytes, and pneumocytes-II, which were critically dependent on the mycobacterial species used. Furthermore, different forms of nuclear alterations (karyopyknosis, karyorrhexis, karyolysis) resulting in cell death were detected in the infected cells, again with characteristic species-dependent differences.

Conclusion

We show the application of a human ex vivo tissue culture model for mycobacterial infections. The immediate primary infection of a set of different cell types and the characteristic morphologic changes observed in these infected human tissues significantly adds to the current understanding of the initial phase of human pulmonary tuberculosis. Further studies are ongoing to elucidate the molecular mechanisms involved in the early onset of mycobacterial infections in the human lung.
Literature
1.
go back to reference Organization WH: Global Tuberculosis Report 2014. World Health Organization; 2015. Organization WH: Global Tuberculosis Report 2014. World Health Organization; 2015.
2.
go back to reference Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416.CrossRefPubMed Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416.CrossRefPubMed
3.
go back to reference van Ingen J, Bendien SA, de Lange WC, Hoefsloot W, Dekhuijzen PN, Boeree MJ, et al. Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands. Thorax. 2009;64:502–6.CrossRefPubMed van Ingen J, Bendien SA, de Lange WC, Hoefsloot W, Dekhuijzen PN, Boeree MJ, et al. Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands. Thorax. 2009;64:502–6.CrossRefPubMed
4.
go back to reference Gupta UD, Katoch VM. Animal models of tuberculosis. Tuberculosis (Edinb). 2005;85:277–93.CrossRef Gupta UD, Katoch VM. Animal models of tuberculosis. Tuberculosis (Edinb). 2005;85:277–93.CrossRef
5.
6.
go back to reference Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science. 2002;295:2255–8.PubMedCentralCrossRefPubMed Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science. 2002;295:2255–8.PubMedCentralCrossRefPubMed
7.
go back to reference Shi L, Ryan GJ, Bhamidi S, Troudt J, Amin A, Izzo A, et al. Isolation and purification of Mycobacterium tuberculosis from H37Rv infected guinea pig lungs. Tuberculosis (Edinb). 2014;94:525–30.CrossRef Shi L, Ryan GJ, Bhamidi S, Troudt J, Amin A, Izzo A, et al. Isolation and purification of Mycobacterium tuberculosis from H37Rv infected guinea pig lungs. Tuberculosis (Edinb). 2014;94:525–30.CrossRef
8.
go back to reference Flynn JL. Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect. 2006;8:1179–88.CrossRefPubMed Flynn JL. Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect. 2006;8:1179–88.CrossRefPubMed
9.
go back to reference Actor J, Hunter Jr R, Jagannath C. Immunopathology of Tuberculosis. In: Zander D, Popper H, Jagirdar J, Haque A, Cagle P, Barrios R, editors. Molecular Pathology of Lung Diseases. Volume 1. New York: Springer New York; 2008. p. 419–28. Molecular Pathology Library.CrossRef Actor J, Hunter Jr R, Jagannath C. Immunopathology of Tuberculosis. In: Zander D, Popper H, Jagirdar J, Haque A, Cagle P, Barrios R, editors. Molecular Pathology of Lung Diseases. Volume 1. New York: Springer New York; 2008. p. 419–28. Molecular Pathology Library.CrossRef
10.
go back to reference Rivero-Lezcano OM. In vitro infection of human cells with Mycobacterium tuberculosis. Tuberculosis (Edinb). 2013;93:123–9.CrossRef Rivero-Lezcano OM. In vitro infection of human cells with Mycobacterium tuberculosis. Tuberculosis (Edinb). 2013;93:123–9.CrossRef
11.
go back to reference Danelishvili L, McGarvey J, Li YJ, Bermudez LE. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol. 2003;5:649–60.CrossRefPubMed Danelishvili L, McGarvey J, Li YJ, Bermudez LE. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol. 2003;5:649–60.CrossRefPubMed
12.
go back to reference Lee J, Remold HG, Leong MH, Kornfeld H. Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J Immunol. 2006;176:4267–74.CrossRefPubMed Lee J, Remold HG, Leong MH, Kornfeld H. Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J Immunol. 2006;176:4267–74.CrossRefPubMed
13.
14.
go back to reference Steele J, Flint KC, Pozniak AL, Hudspith B, Johnson MM, Rook GA. Inhibition of virulent Mycobacterium tuberculosis by murine peritoneal macrophages and human alveolar lavage cells: the effects of lymphokines and recombinant gamma interferon. Tubercle. 1986;67:289–94.CrossRefPubMed Steele J, Flint KC, Pozniak AL, Hudspith B, Johnson MM, Rook GA. Inhibition of virulent Mycobacterium tuberculosis by murine peritoneal macrophages and human alveolar lavage cells: the effects of lymphokines and recombinant gamma interferon. Tubercle. 1986;67:289–94.CrossRefPubMed
15.
go back to reference Brown AE, Holzer TJ, Andersen BR. Capacity of human neutrophils to kill Mycobacterium tuberculosis. J Infect Dis. 1987;156:985–9.CrossRefPubMed Brown AE, Holzer TJ, Andersen BR. Capacity of human neutrophils to kill Mycobacterium tuberculosis. J Infect Dis. 1987;156:985–9.CrossRefPubMed
16.
go back to reference Peterson PK, Gekker G, Hu S, Sheng WS, Anderson WR, Ulevitch RJ, et al. CD14 receptor-mediated uptake of nonopsonized Mycobacterium tuberculosis by human microglia. Infect Immun. 1995;63:1598–602.PubMedCentralPubMed Peterson PK, Gekker G, Hu S, Sheng WS, Anderson WR, Ulevitch RJ, et al. CD14 receptor-mediated uptake of nonopsonized Mycobacterium tuberculosis by human microglia. Infect Immun. 1995;63:1598–602.PubMedCentralPubMed
17.
go back to reference Stokes RW, Doxsee D. The receptor-mediated uptake, survival, replication, and drug sensitivity of Mycobacterium tuberculosis within the macrophage-like cell line THP-1: a comparison with human monocyte-derived macrophages. Cell Immunol. 1999;197:1–9.CrossRefPubMed Stokes RW, Doxsee D. The receptor-mediated uptake, survival, replication, and drug sensitivity of Mycobacterium tuberculosis within the macrophage-like cell line THP-1: a comparison with human monocyte-derived macrophages. Cell Immunol. 1999;197:1–9.CrossRefPubMed
18.
go back to reference Rockett KA, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun. 1998;66:5314–21.PubMedCentralPubMed Rockett KA, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun. 1998;66:5314–21.PubMedCentralPubMed
19.
go back to reference Caccamo N, Milano S, Di Sano C, Cigna D, Ivanyi J, Krensky AM, et al. Identification of epitopes of Mycobacterium tuberculosis 16-kDa protein recognized by human leukocyte antigen-A*0201 CD8(+) T lymphocytes. J Infect Dis. 2002;186:991–8.CrossRefPubMed Caccamo N, Milano S, Di Sano C, Cigna D, Ivanyi J, Krensky AM, et al. Identification of epitopes of Mycobacterium tuberculosis 16-kDa protein recognized by human leukocyte antigen-A*0201 CD8(+) T lymphocytes. J Infect Dis. 2002;186:991–8.CrossRefPubMed
21.
go back to reference Bermudez LE, Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun. 1996;64:1400–6.PubMedCentralPubMed Bermudez LE, Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun. 1996;64:1400–6.PubMedCentralPubMed
22.
go back to reference Mackaness GB. The growth of tubercle bacilli in monocytes from normal and vaccinated rabbits. Am Rev Tuberc. 1954;69:495–504.PubMed Mackaness GB. The growth of tubercle bacilli in monocytes from normal and vaccinated rabbits. Am Rev Tuberc. 1954;69:495–504.PubMed
24.
go back to reference Patterson RJ, Youmans GP. Multiplication of Mycobacterium tuberculosis Within Normal and “Immune” Mouse Macrophages Cultivated With and Without Streptomycin. Infect Immun. 1970;1:30–40.PubMedCentralPubMed Patterson RJ, Youmans GP. Multiplication of Mycobacterium tuberculosis Within Normal and “Immune” Mouse Macrophages Cultivated With and Without Streptomycin. Infect Immun. 1970;1:30–40.PubMedCentralPubMed
25.
go back to reference Lamhamedi-Cherradi S, de Chastellier C, Casanova JL. Growth of Mycobacterium bovis, Bacille Calmette-Guerin, within human monocytes-macrophages cultured in serum-free medium. J Immunol Methods. 1999;225:75–86.CrossRefPubMed Lamhamedi-Cherradi S, de Chastellier C, Casanova JL. Growth of Mycobacterium bovis, Bacille Calmette-Guerin, within human monocytes-macrophages cultured in serum-free medium. J Immunol Methods. 1999;225:75–86.CrossRefPubMed
27.
go back to reference Wallis RS, Vinhas S, Janulionis E. Strain specificity of antimycobacterial immunity in whole blood culture after cure of tuberculosis. Tuberculosis (Edinb). 2009;89:221–4.CrossRef Wallis RS, Vinhas S, Janulionis E. Strain specificity of antimycobacterial immunity in whole blood culture after cure of tuberculosis. Tuberculosis (Edinb). 2009;89:221–4.CrossRef
28.
go back to reference Bermudez LE, Sangari FJ, Kolonoski P, Petrofsky M, Goodman J. The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun. 2002;70:140–6.PubMedCentralCrossRefPubMed Bermudez LE, Sangari FJ, Kolonoski P, Petrofsky M, Goodman J. The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun. 2002;70:140–6.PubMedCentralCrossRefPubMed
29.
go back to reference Bonay M, Bouchonnet F, Pelicic V, Lagier B, Grandsaigne M, Lecossier D, et al. Effect of stimulation of human macrophages on intracellular survival of Mycobacterium bovis Bacillus Calmette-Guerin. Evaluation with a mycobacterial reporter strain. Am J Respir Crit Care Med. 1999;159:1629–37.CrossRefPubMed Bonay M, Bouchonnet F, Pelicic V, Lagier B, Grandsaigne M, Lecossier D, et al. Effect of stimulation of human macrophages on intracellular survival of Mycobacterium bovis Bacillus Calmette-Guerin. Evaluation with a mycobacterial reporter strain. Am J Respir Crit Care Med. 1999;159:1629–37.CrossRefPubMed
30.
go back to reference Martineau AR, Wilkinson KA, Newton SM, Floto RA, Norman AW, Skolimowska K, et al. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol. 2007;178:7190–8.CrossRefPubMed Martineau AR, Wilkinson KA, Newton SM, Floto RA, Norman AW, Skolimowska K, et al. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol. 2007;178:7190–8.CrossRefPubMed
31.
go back to reference Garg SK, Volpe E, Palmieri G, Mattei M, Galati D, Martino A, et al. Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. J Infect Dis. 2004;189:2129–38.CrossRefPubMed Garg SK, Volpe E, Palmieri G, Mattei M, Galati D, Martino A, et al. Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. J Infect Dis. 2004;189:2129–38.CrossRefPubMed
32.
go back to reference Kusner DJ, Adams J. ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D. J Immunol. 2000;164:379–88.CrossRefPubMed Kusner DJ, Adams J. ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D. J Immunol. 2000;164:379–88.CrossRefPubMed
33.
go back to reference Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8:359–68.CrossRefPubMed Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8:359–68.CrossRefPubMed
34.
go back to reference Jager J, Marwitz S, Tiefenau J, Rasch J, Shevchuk O, Kugler C, et al. Human lung tissue explants reveal novel interactions during Legionella pneumophila infections. Infect Immun. 2014;82:275–85.PubMedCentralCrossRefPubMed Jager J, Marwitz S, Tiefenau J, Rasch J, Shevchuk O, Kugler C, et al. Human lung tissue explants reveal novel interactions during Legionella pneumophila infections. Infect Immun. 2014;82:275–85.PubMedCentralCrossRefPubMed
35.
go back to reference Harrison F, Muruli A, Higgins S, Diggle SP. Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect Immun. 2014;82:3312–23.PubMedCentralCrossRefPubMed Harrison F, Muruli A, Higgins S, Diggle SP. Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect Immun. 2014;82:3312–23.PubMedCentralCrossRefPubMed
36.
go back to reference Szymanski KV, Toennies M, Becher A, Fatykhova D, N’Guessan PD, Gutbier B, et al. Streptococcus pneumoniae-induced regulation of cyclooxygenase-2 in human lung tissue. Eur Respir J. 2012;40:1458–67.CrossRefPubMed Szymanski KV, Toennies M, Becher A, Fatykhova D, N’Guessan PD, Gutbier B, et al. Streptococcus pneumoniae-induced regulation of cyclooxygenase-2 in human lung tissue. Eur Respir J. 2012;40:1458–67.CrossRefPubMed
37.
go back to reference Rupp J, Droemann D, Goldmann T, Zabel P, Solbach W, Vollmer E, et al. Alveolar epithelial cells type II are major target cells for C. pneumoniae in chronic but not in acute respiratory infection. FEMS Immunol Med Microbiol. 2004;41:197–203.CrossRefPubMed Rupp J, Droemann D, Goldmann T, Zabel P, Solbach W, Vollmer E, et al. Alveolar epithelial cells type II are major target cells for C. pneumoniae in chronic but not in acute respiratory infection. FEMS Immunol Med Microbiol. 2004;41:197–203.CrossRefPubMed
38.
go back to reference Droemann D, Rupp J, Rohmann K, Osbahr S, Ulmer AJ, Marwitz S, et al. The TGF-beta-pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae. Respir Res. 2010;11:67.CrossRef Droemann D, Rupp J, Rohmann K, Osbahr S, Ulmer AJ, Marwitz S, et al. The TGF-beta-pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae. Respir Res. 2010;11:67.CrossRef
39.
go back to reference Shevchuk O, Abidi N, Klawonn F, Wissing J, Nimtz M, Kugler C, et al. HOPE-Fixation of Lung Tissue Allows Retrospective Proteome and Phosphoproteome Studies. J Proteome Res. 2014;13:5230–9.CrossRefPubMed Shevchuk O, Abidi N, Klawonn F, Wissing J, Nimtz M, Kugler C, et al. HOPE-Fixation of Lung Tissue Allows Retrospective Proteome and Phosphoproteome Studies. J Proteome Res. 2014;13:5230–9.CrossRefPubMed
40.
go back to reference Olert J, Wiedorn KH, Goldmann T, Kuhl H, Mehraein Y, Scherthan H, et al. HOPE fixation: a novel fixing method and paraffin-embedding technique for human soft tissues. Pathol Res Pract. 2001;197:823–6.CrossRefPubMed Olert J, Wiedorn KH, Goldmann T, Kuhl H, Mehraein Y, Scherthan H, et al. HOPE fixation: a novel fixing method and paraffin-embedding technique for human soft tissues. Pathol Res Pract. 2001;197:823–6.CrossRefPubMed
41.
go back to reference Fellenberg K, Hauser NC, Brors B, Neutzner A, Hoheisel JD, Vingron M. Correspondence analysis applied to microarray data. Proc Natl Acad Sci U S A. 2001;98:10781–6.PubMedCentralCrossRefPubMed Fellenberg K, Hauser NC, Brors B, Neutzner A, Hoheisel JD, Vingron M. Correspondence analysis applied to microarray data. Proc Natl Acad Sci U S A. 2001;98:10781–6.PubMedCentralCrossRefPubMed
42.
go back to reference Lang DS, Droemann D, Schultz H, Branscheid D, Martin C, Ressmeyer AR, et al. A novel human ex vivo model for the analysis of molecular events during lung cancer chemotherapy. Respir Res. 2007;8:43.PubMedCentralCrossRefPubMed Lang DS, Droemann D, Schultz H, Branscheid D, Martin C, Ressmeyer AR, et al. A novel human ex vivo model for the analysis of molecular events during lung cancer chemotherapy. Respir Res. 2007;8:43.PubMedCentralCrossRefPubMed
43.
go back to reference Xu F, Droemann D, Rupp J, Shen H, Wu X, Goldmann T, et al. Modulation of the inflammatory response to Streptococcus pneumoniae in a model of acute lung tissue infection. Am J Respir Cell Mol Biol. 2008;39:522–9.CrossRefPubMed Xu F, Droemann D, Rupp J, Shen H, Wu X, Goldmann T, et al. Modulation of the inflammatory response to Streptococcus pneumoniae in a model of acute lung tissue infection. Am J Respir Cell Mol Biol. 2008;39:522–9.CrossRefPubMed
44.
go back to reference Organization WH: Global Tuberculosis Report 2013. World Health Organization; 2014 Organization WH: Global Tuberculosis Report 2013. World Health Organization; 2014
45.
go back to reference O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527.CrossRefPubMed O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527.CrossRefPubMed
46.
go back to reference Jereb J, Etkind SC, Joglar OT, Moore M, Taylor Z. Tuberculosis contact investigations: outcomes in selected areas of the United States, 1999. Int J Tuberc Lung Dis. 2003;7:S384–90.PubMed Jereb J, Etkind SC, Joglar OT, Moore M, Taylor Z. Tuberculosis contact investigations: outcomes in selected areas of the United States, 1999. Int J Tuberc Lung Dis. 2003;7:S384–90.PubMed
47.
go back to reference Marks SM, Taylor Z, Qualls NL, Shrestha-Kuwahara RJ, Wilce MA, Nguyen CH. Outcomes of contact investigations of infectious tuberculosis patients. Am J Respir Crit Care Med. 2000;162:2033–8.CrossRefPubMed Marks SM, Taylor Z, Qualls NL, Shrestha-Kuwahara RJ, Wilce MA, Nguyen CH. Outcomes of contact investigations of infectious tuberculosis patients. Am J Respir Crit Care Med. 2000;162:2033–8.CrossRefPubMed
48.
go back to reference Styblo K. Recent advances in epidemiological research in tuberculosis. Adv Tuberc Res. 1980;20:1–63.PubMed Styblo K. Recent advances in epidemiological research in tuberculosis. Adv Tuberc Res. 1980;20:1–63.PubMed
49.
go back to reference Vinay Kumar AKA, Fausto N, Aster J. Robbins and Cotran: Pathologic Basis of Disease. 8th ed. 2010. Vinay Kumar AKA, Fausto N, Aster J. Robbins and Cotran: Pathologic Basis of Disease. 8th ed. 2010.
50.
go back to reference Robert J. Mason VCB, Thomas Martin, Talmadge E King, Jr., Schraufnagel, John F. Murray, FRCP, Jay A. Nadel, Jay A. Nadel, : Murray and Nadel’s Textbook of Respiratory Medicine. Saunders; 2010. Robert J. Mason VCB, Thomas Martin, Talmadge E King, Jr., Schraufnagel, John F. Murray, FRCP, Jay A. Nadel, Jay A. Nadel, : Murray and Nadel’s Textbook of Respiratory Medicine. Saunders; 2010.
51.
go back to reference Ryan K, Ray CG, Ahmad N, Drew WL, Plorde J. Sherris Medical Microbiology. McGraw-Hill Education: Fifth Edition; 2009. Ryan K, Ray CG, Ahmad N, Drew WL, Plorde J. Sherris Medical Microbiology. McGraw-Hill Education: Fifth Edition; 2009.
52.
go back to reference Agdestein A, Jones A, Flatberg A, Johansen TB, Heffernan IA, Djonne B, et al. Intracellular growth of Mycobacterium avium subspecies and global transcriptional responses in human macrophages after infection. BMC Genomics. 2014;15:58.PubMedCentralCrossRefPubMed Agdestein A, Jones A, Flatberg A, Johansen TB, Heffernan IA, Djonne B, et al. Intracellular growth of Mycobacterium avium subspecies and global transcriptional responses in human macrophages after infection. BMC Genomics. 2014;15:58.PubMedCentralCrossRefPubMed
54.
go back to reference Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol. 2000;164:2016–20.CrossRefPubMed Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol. 2000;164:2016–20.CrossRefPubMed
55.
go back to reference Wallis RS, Amir-Tahmasseb M, Ellner JJ. Induction of interleukin 1 and tumor necrosis factor by mycobacterial proteins: the monocyte western blot. Proc Natl Acad Sci U S A. 1990;87:3348–52.PubMedCentralCrossRefPubMed Wallis RS, Amir-Tahmasseb M, Ellner JJ. Induction of interleukin 1 and tumor necrosis factor by mycobacterial proteins: the monocyte western blot. Proc Natl Acad Sci U S A. 1990;87:3348–52.PubMedCentralCrossRefPubMed
56.
go back to reference Zhang Y, Doerfler M, Lee TC, Guillemin B, Rom WN. Mechanisms of stimulation of interleukin-1 beta and tumor necrosis factor-alpha by Mycobacterium tuberculosis components. J Clin Invest. 1993;91:2076–83.PubMedCentralCrossRefPubMed Zhang Y, Doerfler M, Lee TC, Guillemin B, Rom WN. Mechanisms of stimulation of interleukin-1 beta and tumor necrosis factor-alpha by Mycobacterium tuberculosis components. J Clin Invest. 1993;91:2076–83.PubMedCentralCrossRefPubMed
57.
go back to reference Fulton SA, Cross JV, Toossi ZT, Boom WH. Regulation of interleukin-12 by interleukin-10, transforming growth factor-beta, tumor necrosis factor-alpha, and interferon-gamma in human monocytes infected with Mycobacterium tuberculosis H37Ra. J Infect Dis. 1998;178:1105–14.CrossRefPubMed Fulton SA, Cross JV, Toossi ZT, Boom WH. Regulation of interleukin-12 by interleukin-10, transforming growth factor-beta, tumor necrosis factor-alpha, and interferon-gamma in human monocytes infected with Mycobacterium tuberculosis H37Ra. J Infect Dis. 1998;178:1105–14.CrossRefPubMed
58.
go back to reference Friedland JS, Remick DG, Shattock R, Griffin GE. Secretion of interleukin-8 following phagocytosis of Mycobacterium tuberculosis by human monocyte cell lines. Eur J Immunol. 1992;22:1373–8.CrossRefPubMed Friedland JS, Remick DG, Shattock R, Griffin GE. Secretion of interleukin-8 following phagocytosis of Mycobacterium tuberculosis by human monocyte cell lines. Eur J Immunol. 1992;22:1373–8.CrossRefPubMed
59.
go back to reference Shaw TC, Thomas LH, Friedland JS. Regulation of IL-10 secretion after phagocytosis of Mycobacterium tuberculosis by human monocytic cells. Cytokine. 2000;12:483–6.CrossRefPubMed Shaw TC, Thomas LH, Friedland JS. Regulation of IL-10 secretion after phagocytosis of Mycobacterium tuberculosis by human monocytic cells. Cytokine. 2000;12:483–6.CrossRefPubMed
60.
go back to reference Gilloteaux J, Jamison JM, Arnold D, Summers JL. Autoschizis: another cell death for cancer cells induced by oxidative stress. Ital J Anat Embryol. 2001;106:79–92.PubMed Gilloteaux J, Jamison JM, Arnold D, Summers JL. Autoschizis: another cell death for cancer cells induced by oxidative stress. Ital J Anat Embryol. 2001;106:79–92.PubMed
61.
go back to reference Gilloteaux J, Jamison JM, Arnold D, Ervin E, Eckroat L, Docherty JJ, et al. Cancer cell necrosis by autoschizis: synergism of antitumor activity of vitamin C: vitamin K3 on human bladder carcinoma T24 cells. Scanning. 1998;20:564–75.CrossRefPubMed Gilloteaux J, Jamison JM, Arnold D, Ervin E, Eckroat L, Docherty JJ, et al. Cancer cell necrosis by autoschizis: synergism of antitumor activity of vitamin C: vitamin K3 on human bladder carcinoma T24 cells. Scanning. 1998;20:564–75.CrossRefPubMed
62.
go back to reference Pais V, Danaila L, Pais E. A comparative ultrastructural study of a new type of autoschizis versus a survival cellular mechanism that involves cell membranes of cerebral arteries in humans. Ultrastruct Pathol. 2012;36:166–70.CrossRefPubMed Pais V, Danaila L, Pais E. A comparative ultrastructural study of a new type of autoschizis versus a survival cellular mechanism that involves cell membranes of cerebral arteries in humans. Ultrastruct Pathol. 2012;36:166–70.CrossRefPubMed
63.
go back to reference Esquivel-Solis H, Vallecillo AJ, Benitez-Guzman A, Adams LG, Lopez-Vidal Y, Gutierrez-Pabello JA. Nitric oxide not apoptosis mediates differential killing of Mycobacterium bovis in bovine macrophages. PLoS One. 2013;8, e63464.PubMedCentralCrossRefPubMed Esquivel-Solis H, Vallecillo AJ, Benitez-Guzman A, Adams LG, Lopez-Vidal Y, Gutierrez-Pabello JA. Nitric oxide not apoptosis mediates differential killing of Mycobacterium bovis in bovine macrophages. PLoS One. 2013;8, e63464.PubMedCentralCrossRefPubMed
64.
go back to reference Mendoza-Aguilar MD, Arce-Paredes P, Aquino-Vega M, Rodríguez-Martínez S, Rojas-Espinosa O. Fate of Mycobacterium tuberculosis in peroxidase-loaded resting murine macrophages. International Journal of Mycobacteriology. 2013;2:3–13.CrossRefPubMed Mendoza-Aguilar MD, Arce-Paredes P, Aquino-Vega M, Rodríguez-Martínez S, Rojas-Espinosa O. Fate of Mycobacterium tuberculosis in peroxidase-loaded resting murine macrophages. International Journal of Mycobacteriology. 2013;2:3–13.CrossRefPubMed
65.
go back to reference Chan J, Xing Y, Magliozzo RS, Bloom BR. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med. 1992;175:1111–22.CrossRefPubMed Chan J, Xing Y, Magliozzo RS, Bloom BR. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med. 1992;175:1111–22.CrossRefPubMed
66.
go back to reference Wolbers F, Buijtenhuijs P, Haanen C, Vermes I. Apoptotic cell death kinetics in vitro depend on the cell types and the inducers used. Apoptosis. 2004;9:385–92.CrossRefPubMed Wolbers F, Buijtenhuijs P, Haanen C, Vermes I. Apoptotic cell death kinetics in vitro depend on the cell types and the inducers used. Apoptosis. 2004;9:385–92.CrossRefPubMed
67.
go back to reference Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2:216–27.PubMedCentralCrossRefPubMed Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2:216–27.PubMedCentralCrossRefPubMed
68.
go back to reference McCracken JM, Allen LA. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death. 2014;7:15–23.PubMedCentralPubMed McCracken JM, Allen LA. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death. 2014;7:15–23.PubMedCentralPubMed
69.
go back to reference Young B, Stewart W, O’Dowd G. Wheater’s Basic Pathology: A Text, Atlas and Review of Histopathology. London: Churchill Livingstone/Elsevier; 2011. Young B, Stewart W, O’Dowd G. Wheater’s Basic Pathology: A Text, Atlas and Review of Histopathology. London: Churchill Livingstone/Elsevier; 2011.
70.
71.
go back to reference Vergne I, Chua J, Singh SB, Deretic V. Cell biology of mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol. 2004;20:367–94.CrossRefPubMed Vergne I, Chua J, Singh SB, Deretic V. Cell biology of mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol. 2004;20:367–94.CrossRefPubMed
72.
go back to reference Bocchino M, Galati D, Sanduzzi A, Colizzi V, Brunetti E, Mancino G. Role of mycobacteria-induced monocyte/macrophage apoptosis in the pathogenesis of human tuberculosis. Int J Tuberc Lung Dis. 2005;9:375–83.PubMed Bocchino M, Galati D, Sanduzzi A, Colizzi V, Brunetti E, Mancino G. Role of mycobacteria-induced monocyte/macrophage apoptosis in the pathogenesis of human tuberculosis. Int J Tuberc Lung Dis. 2005;9:375–83.PubMed
73.
go back to reference Yang CT, Cambier CJ, Davis JM, Hall CJ, Crosier PS, Ramakrishnan L. Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe. 2012;12:301–12.PubMedCentralCrossRefPubMed Yang CT, Cambier CJ, Davis JM, Hall CJ, Crosier PS, Ramakrishnan L. Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe. 2012;12:301–12.PubMedCentralCrossRefPubMed
74.
go back to reference Bogdan C, Rollinghoff M, Diefenbach A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol. 2000;12:64–76.CrossRefPubMed Bogdan C, Rollinghoff M, Diefenbach A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol. 2000;12:64–76.CrossRefPubMed
75.
go back to reference Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4:278–86.CrossRefPubMed Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4:278–86.CrossRefPubMed
76.
go back to reference Jones GS, Amirault HJ, Andersen BR. Killing of Mycobacterium tuberculosis by neutrophils: a nonoxidative process. J Infect Dis. 1990;162:700–4.CrossRefPubMed Jones GS, Amirault HJ, Andersen BR. Killing of Mycobacterium tuberculosis by neutrophils: a nonoxidative process. J Infect Dis. 1990;162:700–4.CrossRefPubMed
77.
go back to reference Kisich KO, Higgins M, Diamond G, Heifets L. Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect Immun. 2002;70:4591–9.PubMedCentralCrossRefPubMed Kisich KO, Higgins M, Diamond G, Heifets L. Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect Immun. 2002;70:4591–9.PubMedCentralCrossRefPubMed
78.
go back to reference Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest. 2007;117:1988–94.PubMedCentralCrossRefPubMed Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest. 2007;117:1988–94.PubMedCentralCrossRefPubMed
79.
go back to reference Majeed M, Perskvist N, Ernst JD, Orselius K, Stendahl O. Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophils. Microb Pathog. 1998;24:309–20.CrossRefPubMed Majeed M, Perskvist N, Ernst JD, Orselius K, Stendahl O. Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophils. Microb Pathog. 1998;24:309–20.CrossRefPubMed
80.
go back to reference Stead WW, Senner JW, Reddick WT, Lofgren JP. Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med. 1990;322:422–7.CrossRefPubMed Stead WW, Senner JW, Reddick WT, Lofgren JP. Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med. 1990;322:422–7.CrossRefPubMed
Metadata
Title
Mycobacteria infect different cell types in the human lung and cause species dependent cellular changes in infected cells
Authors
Dariimaa Ganbat
Sophie Seehase
Elvira Richter
Ekkehard Vollmer
Norbert Reiling
Kurt Fellenberg
Karoline I. Gaede
Christian Kugler
Torsten Goldmann
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2016
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-016-0185-5

Other articles of this Issue 1/2016

BMC Pulmonary Medicine 1/2016 Go to the issue