Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Tuberculosis | Research article

Association of childhood pulmonary tuberculosis with exposure to indoor air pollution: a case control study

Authors: Nkosana Jafta, Prakash M. Jeena, Lars Barregard, Rajen N. Naidoo

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

Crude measures of exposure to indicate indoor air pollution have been associated with the increased risk for acquiring tuberculosis. Our study aimed to determine an association between childhood pulmonary tuberculosis (PTB) and exposure to indoor air pollution (IAP), based on crude exposure predictors and directly sampled and modelled pollutant concentrations.

Methods

In this case control study, children diagnosed with PTB were compared to children without PTB. Questionnaires about children’s health; and house characteristics and activities (including household air pollution) and secondhand smoke (SHS) exposure were administered to caregivers of participants. A subset of the participants’ homes was sampled for measurements of PM10 over a 24-h period (n = 105), and NO2 over a period of 2 to 3 weeks (n = 82). IAP concentrations of PM10 and NO2 were estimated in the remaining homes using predictive models. Logistic regression was used to look for association between IAP concentrations, crude measures of IAP, and PTB.

Results

Of the 234 participants, 107 were cases and 127 were controls. Pollutants concentrations (μg/m3) for were PM10 median: 48 (range: 6.6–241) and NO2 median: 16.7 (range: 4.5–55). Day-to-day variability within- household was large. In multivariate models adjusted for age, sex, socioeconomic status, TB contact and HIV status, the crude exposure measures of pollution viz. cooking fuel type (clean or dirty fuel) and SHS showed positive non-significant associations with PTB. Presence of dampness in the household was a significant risk factor for childhood TB acquisition with aOR of 2.4 (95% CI: 1.1–5.0). The crude exposure predictors of indoor air pollution are less influenced by day-to-day variability. No risk was observed between pollutant concentrations and PTB in children for PM10 and NO2.

Conclusion

Our study suggests increased risk of childhood tuberculosis disease when children are exposed to SHS, dirty cooking fuel, and dampness in their homes. Yet, HIV status, age and TB contact are the most important risk factors of childhood PTB in this population.
Literature
5.
go back to reference Lin H-H, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med. 2007;4:e20.CrossRef Lin H-H, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med. 2007;4:e20.CrossRef
6.
go back to reference Patra J, Bhatia M, Suraweera W, Morris SK, Patra C, Gupta PC, et al. Exposure to second-hand smoke and the risk of tuberculosis in children and adults: a systematic review and meta-analysis of 18 observational studies. PLoS Med. 2015;12:e1001835.CrossRef Patra J, Bhatia M, Suraweera W, Morris SK, Patra C, Gupta PC, et al. Exposure to second-hand smoke and the risk of tuberculosis in children and adults: a systematic review and meta-analysis of 18 observational studies. PLoS Med. 2015;12:e1001835.CrossRef
7.
go back to reference Jassal MS, Bakman I, Jones B. Correlation of ambient pollution levels and heavily- trafficked roadway proximity on the prevalence of smear-positive tuberculosis. Public Health. 2013;127:268–74.CrossRef Jassal MS, Bakman I, Jones B. Correlation of ambient pollution levels and heavily- trafficked roadway proximity on the prevalence of smear-positive tuberculosis. Public Health. 2013;127:268–74.CrossRef
8.
go back to reference Smith G, Schoenbach VJ, Richardson DB, Gammon MD. Particulate air pollution and susceptibility to the development of pulmonary tuberculosis disease in North Carolina: an ecological study. Int J Environ Res. 2014;24:103–12. Smith G, Schoenbach VJ, Richardson DB, Gammon MD. Particulate air pollution and susceptibility to the development of pulmonary tuberculosis disease in North Carolina: an ecological study. Int J Environ Res. 2014;24:103–12.
9.
go back to reference Smith GS, Van Den Eeden SK, Garcia C, Shan J, Baxter R, Herring AH, et al. Air pollution and pulmonary tuberculosis: a nested case–control study among members of a northern California health plan. Environ Health Perspect. 2016;124:761–8.CrossRef Smith GS, Van Den Eeden SK, Garcia C, Shan J, Baxter R, Herring AH, et al. Air pollution and pulmonary tuberculosis: a nested case–control study among members of a northern California health plan. Environ Health Perspect. 2016;124:761–8.CrossRef
13.
go back to reference Mentz G, Robins TG, Batterman S, Naidoo RN. Acute respiratory symptoms associated with short term fluctuations in ambient pollutants among schoolchildren in Durban, South Africa. Environ Pollut. 2018;233:529–39.CrossRef Mentz G, Robins TG, Batterman S, Naidoo RN. Acute respiratory symptoms associated with short term fluctuations in ambient pollutants among schoolchildren in Durban, South Africa. Environ Pollut. 2018;233:529–39.CrossRef
14.
go back to reference Jafta N, Barregard L, Jeena PM, Naidoo RN. Indoor air quality of low and middle income urban households in Durban, South Africa. Environ Res. 2017;156:47–56.CrossRef Jafta N, Barregard L, Jeena PM, Naidoo RN. Indoor air quality of low and middle income urban households in Durban, South Africa. Environ Res. 2017;156:47–56.CrossRef
15.
go back to reference Kurmi OP, Sadhra CS, Ayres JG, Sadhra SS. Tuberculosis risk from exposure to solid fuel smoke: a systematic review and meta-analysis. J Epidemiol Community Health. 2014;68:1112–8.CrossRef Kurmi OP, Sadhra CS, Ayres JG, Sadhra SS. Tuberculosis risk from exposure to solid fuel smoke: a systematic review and meta-analysis. J Epidemiol Community Health. 2014;68:1112–8.CrossRef
16.
go back to reference Lin H-H, Suk C-W, Lo H-L, Huang R-Y, Enarson DA, Chiang C-Y. Indoor air pollution from solid fuel and tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2014;18:613–21.CrossRef Lin H-H, Suk C-W, Lo H-L, Huang R-Y, Enarson DA, Chiang C-Y. Indoor air pollution from solid fuel and tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2014;18:613–21.CrossRef
17.
go back to reference Sumpter C, Chandramohan D. Systematic review and meta-analysis of the associations between indoor air pollution and tuberculosis. Trop Med Int Heal. 2013;18:101–8.CrossRef Sumpter C, Chandramohan D. Systematic review and meta-analysis of the associations between indoor air pollution and tuberculosis. Trop Med Int Heal. 2013;18:101–8.CrossRef
18.
go back to reference Pokhrel AK, Bates MN, Verma SC, Joshi HS, Sreeramareddy CT, Smith KR. Tuberculosis and indoor biomass and kerosene use in Nepal: a case-control study. Environ Health Perspect. 2010;118:558–64.CrossRef Pokhrel AK, Bates MN, Verma SC, Joshi HS, Sreeramareddy CT, Smith KR. Tuberculosis and indoor biomass and kerosene use in Nepal: a case-control study. Environ Health Perspect. 2010;118:558–64.CrossRef
19.
go back to reference Crampin AC, Glynn JR, Floyd S, Malema SS, Mwinuka VK, Ngwira BMM, et al. Tuberculosis and gender: exploring the patterns in a case control study in Malawi. Int J Tuberc Lung Dis. 2004;8:194–203.PubMed Crampin AC, Glynn JR, Floyd S, Malema SS, Mwinuka VK, Ngwira BMM, et al. Tuberculosis and gender: exploring the patterns in a case control study in Malawi. Int J Tuberc Lung Dis. 2004;8:194–203.PubMed
20.
go back to reference Lakshmi PVM, Virdi NK, Thakur JS, Smith KR, Bates MN, Kumar R. Biomass fuel and risk of tuberculosis: a case-control study from northern India. J Epidemiol Community Health. 2012;66:457–61.CrossRef Lakshmi PVM, Virdi NK, Thakur JS, Smith KR, Bates MN, Kumar R. Biomass fuel and risk of tuberculosis: a case-control study from northern India. J Epidemiol Community Health. 2012;66:457–61.CrossRef
21.
go back to reference Behera D, Aggarwal G. Domestic cooking fuel exposure and tuberculosis in Indian women. Indian J Chest Dis Allied Sci. 2010;52:139–43.PubMed Behera D, Aggarwal G. Domestic cooking fuel exposure and tuberculosis in Indian women. Indian J Chest Dis Allied Sci. 2010;52:139–43.PubMed
22.
go back to reference Lam NL, Smith KR, Gauthier A, Bates MN. Kerosene: a review of household uses and their hazards in low- and middle-income countries. J Toxicol Environ Heal Part B Crit Rev. 2012;15:396–432.CrossRef Lam NL, Smith KR, Gauthier A, Bates MN. Kerosene: a review of household uses and their hazards in low- and middle-income countries. J Toxicol Environ Heal Part B Crit Rev. 2012;15:396–432.CrossRef
23.
go back to reference Jafta N, Jeena PM, Barregard L, Naidoo RN. Childhood tuberculosis and exposure to indoor air pollution: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2015;19:596–602.CrossRef Jafta N, Jeena PM, Barregard L, Naidoo RN. Childhood tuberculosis and exposure to indoor air pollution: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2015;19:596–602.CrossRef
24.
go back to reference Kilpeläinen M, Terho EO, Helenius H, Koskenvuo M. Home dampness, current allergic diseases, and respiratory infections among young adults. Thorax. 2001;56:462–7.CrossRef Kilpeläinen M, Terho EO, Helenius H, Koskenvuo M. Home dampness, current allergic diseases, and respiratory infections among young adults. Thorax. 2001;56:462–7.CrossRef
25.
go back to reference Norbäck D, Lu C, Zhang Y, Li B, Zhao Z, Huang C, et al. Common cold among pre-school children in China - associations with ambient PM10 and dampness, mould, cats, dogs, rats and cockroaches in the home environment. Environ Int. 2017;103:13–22.CrossRef Norbäck D, Lu C, Zhang Y, Li B, Zhao Z, Huang C, et al. Common cold among pre-school children in China - associations with ambient PM10 and dampness, mould, cats, dogs, rats and cockroaches in the home environment. Environ Int. 2017;103:13–22.CrossRef
26.
go back to reference Newton RC. Dampness as a factor in tuberculosis. Trans Am Clin Climatol Assoc. 1900;16:15–28. Newton RC. Dampness as a factor in tuberculosis. Trans Am Clin Climatol Assoc. 1900;16:15–28.
27.
go back to reference Kuhn DM, Ghannoum MA. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective fungal organisms in damp buildings. Clin Microbiol Rev. 2003;16:144–72.CrossRef Kuhn DM, Ghannoum MA. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective fungal organisms in damp buildings. Clin Microbiol Rev. 2003;16:144–72.CrossRef
28.
go back to reference Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, et al. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins. 2014;6:430–52.CrossRef Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, et al. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins. 2014;6:430–52.CrossRef
29.
go back to reference Altet MN, Alcaide J, Plans P, Taberner JL, Salto E, Folguera L, et al. Passive smoking and risk of pulmonary tuberculosis in children immediately following infection:a case-control study. Tuber Lung Dis. 1996;77:537–44.CrossRef Altet MN, Alcaide J, Plans P, Taberner JL, Salto E, Folguera L, et al. Passive smoking and risk of pulmonary tuberculosis in children immediately following infection:a case-control study. Tuber Lung Dis. 1996;77:537–44.CrossRef
31.
go back to reference Kan X, Chiang C-Y, Enarson DA, Chen W, Yang J, Chen G. Indoor solid fuel use and tuberculosis in China: a matched case-control study. BMC Public Health 2011;11:498. doi:1471–2458/11/498. Kan X, Chiang C-Y, Enarson DA, Chen W, Yang J, Chen G. Indoor solid fuel use and tuberculosis in China: a matched case-control study. BMC Public Health 2011;11:498. doi:1471–2458/11/498.
32.
go back to reference Lai HK, Bayer-Oglesby L, Colvile R, Gotschi T, Jantunen MJ, Kunzli N, et al. Determinants of indoor air concentrations of PM2.5, black smoke and NO2 in six European cities (EXPOLIS study). Atmos Environ. 2006;40:1299–313.CrossRef Lai HK, Bayer-Oglesby L, Colvile R, Gotschi T, Jantunen MJ, Kunzli N, et al. Determinants of indoor air concentrations of PM2.5, black smoke and NO2 in six European cities (EXPOLIS study). Atmos Environ. 2006;40:1299–313.CrossRef
33.
go back to reference Shezi B, Jafta N, Sartorius B, Naidoo RN, Shezi B. Developing a predictive model for fine particulate matter concentrations in low socio-economic households in Durban, South Africa. Indoor Air. 2018;28:228–37.CrossRef Shezi B, Jafta N, Sartorius B, Naidoo RN, Shezi B. Developing a predictive model for fine particulate matter concentrations in low socio-economic households in Durban, South Africa. Indoor Air. 2018;28:228–37.CrossRef
34.
go back to reference You S, Tong YW, Neoh KG, Dai Y, Wang C-H. On the association between outdoor PM2.5 concentration and the seasonality of tuberculosis for Beijing and Hong Kong. Environ Pollut. 2016;218:1170–9.CrossRef You S, Tong YW, Neoh KG, Dai Y, Wang C-H. On the association between outdoor PM2.5 concentration and the seasonality of tuberculosis for Beijing and Hong Kong. Environ Pollut. 2016;218:1170–9.CrossRef
35.
go back to reference Ni K, Carter E, Schauer JJ, Ezzati M, Zhang Y, Niu H, et al. Seasonal variation in outdoor, indoor, and personal air pollution exposures of women using wood stoves in the Tibetan plateau: baseline assessment for an energy intervention study. Environ Int. 2016;94:449–57.CrossRef Ni K, Carter E, Schauer JJ, Ezzati M, Zhang Y, Niu H, et al. Seasonal variation in outdoor, indoor, and personal air pollution exposures of women using wood stoves in the Tibetan plateau: baseline assessment for an energy intervention study. Environ Int. 2016;94:449–57.CrossRef
36.
go back to reference Baumgartner J, Schauer JJ, Ezzati M, Lu L, Cheng C, Patz J, et al. Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China. Indoor Air. 2011;21:479–88.CrossRef Baumgartner J, Schauer JJ, Ezzati M, Lu L, Cheng C, Patz J, et al. Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China. Indoor Air. 2011;21:479–88.CrossRef
37.
go back to reference Bartington SE, Bakolis I, Devakumar D, Kurmi OP, Gulliver J, Chaube G, et al. Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environ Pollut. 2017;220:38–45.CrossRef Bartington SE, Bakolis I, Devakumar D, Kurmi OP, Gulliver J, Chaube G, et al. Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environ Pollut. 2017;220:38–45.CrossRef
38.
go back to reference Ibrahimou B, Salihu HM, Aliyu MH, Anozie C. Risk of preeclampsia from exposure to particulate matter (PM2.5) speciation chemicals during pregnancy. J Occup Environ Med. 2014;56:1228–34.CrossRef Ibrahimou B, Salihu HM, Aliyu MH, Anozie C. Risk of preeclampsia from exposure to particulate matter (PM2.5) speciation chemicals during pregnancy. J Occup Environ Med. 2014;56:1228–34.CrossRef
40.
go back to reference Krall JR, Anderson GB, Dominici F, Bell ML, Peng RD. Short-term exposure to particulate matter constituents and mortality in a national study of U.S. urban communities. Environ Health Perspect. 2013;121:1148–53.CrossRef Krall JR, Anderson GB, Dominici F, Bell ML, Peng RD. Short-term exposure to particulate matter constituents and mortality in a national study of U.S. urban communities. Environ Health Perspect. 2013;121:1148–53.CrossRef
41.
go back to reference Secrest MH, Schauer JJ, Carter E, Baumgartner J. Particulate matter chemical component concentrations and sources in settings of household solid fuel use. Indoor Air. 2017;27:1052–66.CrossRef Secrest MH, Schauer JJ, Carter E, Baumgartner J. Particulate matter chemical component concentrations and sources in settings of household solid fuel use. Indoor Air. 2017;27:1052–66.CrossRef
42.
go back to reference Boelaert JR, Gomes MS, Gordeuk VR. Smoking, iron, and tuberculosis. Lancet. 2003;362:1243–4.CrossRef Boelaert JR, Gomes MS, Gordeuk VR. Smoking, iron, and tuberculosis. Lancet. 2003;362:1243–4.CrossRef
43.
go back to reference Karavitis J, Kovacs EJ. Macrophage phagocytosis: effects of environmental pollutants, alcohol, cigarette smoke, and other external factors. J Leukoc Biol. 2011;90:1065–78.CrossRef Karavitis J, Kovacs EJ. Macrophage phagocytosis: effects of environmental pollutants, alcohol, cigarette smoke, and other external factors. J Leukoc Biol. 2011;90:1065–78.CrossRef
44.
go back to reference Siddiqui MS, Fakih MAH, Burney WA, Iftikhar R, Khan N. Environmental and host-related factors predisposing to tuberculosis in Karachi: a cross-sectional study. J Pioneer Med Sci. 2011;1:13–8. Siddiqui MS, Fakih MAH, Burney WA, Iftikhar R, Khan N. Environmental and host-related factors predisposing to tuberculosis in Karachi: a cross-sectional study. J Pioneer Med Sci. 2011;1:13–8.
45.
go back to reference Jubulis J, Kinikar A, Ithape M, Khandave M, Dixit S, Hotalkar S, et al. Modifiable risk factors associated with tuberculosis disease in children in Pune, India. Int J Tuberc Lung Dis. 2014;18:198–204.CrossRef Jubulis J, Kinikar A, Ithape M, Khandave M, Dixit S, Hotalkar S, et al. Modifiable risk factors associated with tuberculosis disease in children in Pune, India. Int J Tuberc Lung Dis. 2014;18:198–204.CrossRef
46.
go back to reference Singh M, Mynak ML, Kumar L, Mathew JL, Jindal SK. Prevalence and risk factors for transmission of infection among children in household contact with adults having pulmonary tuberculosis. Arch Child Dis. 2005;90:624–8.CrossRef Singh M, Mynak ML, Kumar L, Mathew JL, Jindal SK. Prevalence and risk factors for transmission of infection among children in household contact with adults having pulmonary tuberculosis. Arch Child Dis. 2005;90:624–8.CrossRef
Metadata
Title
Association of childhood pulmonary tuberculosis with exposure to indoor air pollution: a case control study
Authors
Nkosana Jafta
Prakash M. Jeena
Lars Barregard
Rajen N. Naidoo
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-6604-9

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue