Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Acute Gastroenteritis | Research article

The epidemiology of non-viral gastroenteritis in New Zealand children from 1997 to 2015: an observational study

Authors: Emma Jeffs, Jonathan Williman, Natalie Martin, Cheryl Brunton, Tony Walls

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

Acute gastroenteritis is a substantial cause of hospitalization in children. Shigella, Salmonella, Campylobacter, Yersinia, enterotoxigenic Escherichia coli (ETEC), Giardia and Cryptosporidium are gastrointestinal pathogens that are notifiable in New Zealand (NZ). The impact of these infections in the pediatric population has not yet been analyzed. The aim of this study was to describe the epidemiological trends in disease notifications and hospital admissions due to non-viral gastroenteritis in NZ children.

Methods

In this population-based descriptive study, age-specific and age-standardized notification and hospital admission rates were analyzed from 1997-to-2015 for Shigella, Salmonella, Campylobacter, Yersinia, ETEC, Giardia and Cryptosporidium infections in children < 15 years of age. Variations in disease by gender, age, ethnicity and geography were described.

Results

From 1997-to-2015 there were 74,454 notifications (57.6% male) and 3192 hospitalizations (56.4% male) due to non-viral gastroenteritis in NZ children aged < 15 years. There was an overall trend towards a reduction in disease notifications and hospitalizations, however each disease showed a unique pattern of change over time. Campylobacter was the pathogen most frequently notified, accounting for 51.7% of notifications and 43.4% of hospitalizations. The hospitalization-to-notification ratios were, from highest to lowest, Salmonella typhi (1:1.09), Shigella (1:4.0), ETEC (1:7.81), nontyphoidal Salmonella (1:13.1), Campylobacter (1:27.8), Yersinia (1:29.2), Cryptosporidium (1,33.4), and Giardia (1,72.5). Compared to females, male notification rates were approximately 40% higher for Campylobacter, 25% higher for Giardia and Yersinia, and 15% higher for Cryptosporidium and nontyphoidal Salmonella (p < 0.001). Notification rates were highest in children 1–4 years, with the exceptions of nontyphoidal Salmonella, Salmonella typhi and Yersinia. Notification rates for nontyphoidal Salmonella and Yersinia were highest in children < 1 year, and for Salmonella typhi those aged 5–9 years. Children < 1 year were most likely to be hospitalized.

Conclusions

The incidence of non-viral gastroenteritis in NZ children reduced during the 19-year period considered. The burden of disease was highest in the community, with only a small percentage of cases requiring hospitalization. This study provides important insight into the non-viral causes of gastroenteritis in NZ children and how environmental influences and changes in food safety practices may have helped to reduce the burden of these diseases in children.
Appendix
Available only for authorised users
Literature
1.
go back to reference Guarino A, Albano F, Ashkenazi S, Gendrel D, Hoekstra JH, Shamir R, Szajewska H. European Society for Paediatric Gastroenterology, hepatology, and nutrition/European Society for Paediatric Infectious Diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe: executive summary. J Pediatr Gastroenterol Nutr. 2008;46:619–21.CrossRef Guarino A, Albano F, Ashkenazi S, Gendrel D, Hoekstra JH, Shamir R, Szajewska H. European Society for Paediatric Gastroenterology, hepatology, and nutrition/European Society for Paediatric Infectious Diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe: executive summary. J Pediatr Gastroenterol Nutr. 2008;46:619–21.CrossRef
2.
go back to reference Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Dopfer D, Fazil A, Fischer-Walker CL, Hald T, et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 2015;12:e1001921.CrossRef Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Dopfer D, Fazil A, Fischer-Walker CL, Hald T, et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 2015;12:e1001921.CrossRef
3.
go back to reference Fletcher SM, McLaws ML, Ellis JT. Prevalence of gastrointestinal pathogens in developed and developing countries: systematic review and meta-analysis. J Public Health Res. 2013;2:42–53.CrossRef Fletcher SM, McLaws ML, Ellis JT. Prevalence of gastrointestinal pathogens in developed and developing countries: systematic review and meta-analysis. J Public Health Res. 2013;2:42–53.CrossRef
4.
go back to reference World Health Organization. Rotavirus vaccines. WHO position paper - January 2013. Wkly Epidemiol Rec. 2013;88:49–64. World Health Organization. Rotavirus vaccines. WHO position paper - January 2013. Wkly Epidemiol Rec. 2013;88:49–64.
5.
go back to reference Kelly MJ, Foley D, Blackmore TK. Hospitalised rotavirus gastroenteritis in New Zealand: the laboratory database is a valuable tool for assessing the impact of rotavirus vaccination. Vaccine. 2017;35:4578–82.CrossRef Kelly MJ, Foley D, Blackmore TK. Hospitalised rotavirus gastroenteritis in New Zealand: the laboratory database is a valuable tool for assessing the impact of rotavirus vaccination. Vaccine. 2017;35:4578–82.CrossRef
6.
go back to reference Grimwood K, Huang QS, Cohet C, Gosling IA, Hook SM, Teele DW, Pinnock RE, Nicholson WR, Graham DA, Farrell AP, et al. Rotavirus hospitalisation in New Zealand children under 3 years of age. J Paediatr Child Health. 2006;42:196–203.CrossRef Grimwood K, Huang QS, Cohet C, Gosling IA, Hook SM, Teele DW, Pinnock RE, Nicholson WR, Graham DA, Farrell AP, et al. Rotavirus hospitalisation in New Zealand children under 3 years of age. J Paediatr Child Health. 2006;42:196–203.CrossRef
7.
go back to reference Lake RJ, Adlam SB, Perera S, Campbell DM, Baker MG. The disease pyramid for acute gastrointestinal illness in New Zealand. Epidemiol Infect. 2010;138:1468–71.CrossRef Lake RJ, Adlam SB, Perera S, Campbell DM, Baker MG. The disease pyramid for acute gastrointestinal illness in New Zealand. Epidemiol Infect. 2010;138:1468–71.CrossRef
8.
go back to reference Adlam SB, Perera S, Lake RJ, Campbell DM, Williman JA, Baker MG. Acute gastrointestinal illness in New Zealand: a community study. Epidemiol Infect. 2011;139:302–8.CrossRef Adlam SB, Perera S, Lake RJ, Campbell DM, Williman JA, Baker MG. Acute gastrointestinal illness in New Zealand: a community study. Epidemiol Infect. 2011;139:302–8.CrossRef
9.
go back to reference Ministry of Health. Guidance on infectious disease management under the health act 1956. Wellington: Ministry of Health; 2017. Ministry of Health. Guidance on infectious disease management under the health act 1956. Wellington: Ministry of Health; 2017.
10.
go back to reference The Institute of Environmental Science and Research Ltd. Notifiable diseases in New Zealand Annual Report 2016. Porirua: The Institute of Environmental Science and Research Ltd; 2017. The Institute of Environmental Science and Research Ltd. Notifiable diseases in New Zealand Annual Report 2016. Porirua: The Institute of Environmental Science and Research Ltd; 2017.
11.
go back to reference Lopez L, Roos R, Cressey P, Hom B, Lee J. Foodborne disease in New Zealand 2015. MPI technical paper no: 2016/54. industries MfP ed. Ministry for Primary Industries: Wellington; 2016. Lopez L, Roos R, Cressey P, Hom B, Lee J. Foodborne disease in New Zealand 2015. MPI technical paper no: 2016/54. industries MfP ed. Ministry for Primary Industries: Wellington; 2016.
12.
go back to reference The Department of Internal Affairs. Government Inquiry into Havelock North Drinking Water. Report of the Havelock North Drinking Water Inquiry: Stage 2. Affairs TDoI ed. Auckland: The Department of Internal Affairs; 2017. The Department of Internal Affairs. Government Inquiry into Havelock North Drinking Water. Report of the Havelock North Drinking Water Inquiry: Stage 2. Affairs TDoI ed. Auckland: The Department of Internal Affairs; 2017.
13.
go back to reference Ministry of Health. Annual update of key results 2015/16: New Zealand health survey. Wellington: Ministry of Health; 2016. Ministry of Health. Annual update of key results 2015/16: New Zealand health survey. Wellington: Ministry of Health; 2016.
16.
go back to reference Voss L, Lennon D, Okesene-Gafa K, Ameratunga S, Martin D. Invasive pneumococcal disease in a pediatric population, Auckland, New Zealand. Pediatr Infect Dis J. 1994;13:873–8.CrossRef Voss L, Lennon D, Okesene-Gafa K, Ameratunga S, Martin D. Invasive pneumococcal disease in a pediatric population, Auckland, New Zealand. Pediatr Infect Dis J. 1994;13:873–8.CrossRef
17.
go back to reference Schlapbach LJ, Straney L, Alexander J, MacLaren G, Festa M, Schibler A, Slater A. Mortality related to invasive infections, sepsis, and septic shock in critically ill children in Australia and New Zealand, 2002-13: a multicentre retrospective cohort study. Lancet Infect Dis. 2015;15:46–54.CrossRef Schlapbach LJ, Straney L, Alexander J, MacLaren G, Festa M, Schibler A, Slater A. Mortality related to invasive infections, sepsis, and septic shock in critically ill children in Australia and New Zealand, 2002-13: a multicentre retrospective cohort study. Lancet Infect Dis. 2015;15:46–54.CrossRef
18.
go back to reference Milne RJ, Lennon DR, Stewart JM, Vander Hoorn S, Scuffham PA. Incidence of acute rheumatic fever in New Zealand children and youth. J Paediatr Child Health. 2012;48:685–91.CrossRef Milne RJ, Lennon DR, Stewart JM, Vander Hoorn S, Scuffham PA. Incidence of acute rheumatic fever in New Zealand children and youth. J Paediatr Child Health. 2012;48:685–91.CrossRef
19.
go back to reference O'Sullivan CE, Baker MG, Zhang J. Increasing hospitalizations for serious skin infections in New Zealand children, 1990-2007. Epidemiol Infect. 2011;139:1794–804.CrossRef O'Sullivan CE, Baker MG, Zhang J. Increasing hospitalizations for serious skin infections in New Zealand children, 1990-2007. Epidemiol Infect. 2011;139:1794–804.CrossRef
20.
go back to reference Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008.
21.
go back to reference Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med. 2000;19:335–51.CrossRef Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med. 2000;19:335–51.CrossRef
22.
go back to reference Statistical Methodology and Applications Branch SRP, National Cancer Institute. Joinpoint Regression Program, Version 4.5.0.1 Statistical Methodology and Applications Branch, Surveillance Research Program, National Cancer Institute; 2017. Statistical Methodology and Applications Branch SRP, National Cancer Institute. Joinpoint Regression Program, Version 4.5.0.1 Statistical Methodology and Applications Branch, Surveillance Research Program, National Cancer Institute; 2017.
23.
go back to reference Wood SN. Generalized additive models: an introduction with R (2nd edition): Chapman and Hall/CRC; Florida. 2017. Wood SN. Generalized additive models: an introduction with R (2nd edition): Chapman and Hall/CRC; Florida. 2017.
24.
go back to reference Redmond EC, Griffith CJ. Consumer food handling in the home: a review of food safety studies. J Food Prot. 2003;66:130–61.CrossRef Redmond EC, Griffith CJ. Consumer food handling in the home: a review of food safety studies. J Food Prot. 2003;66:130–61.CrossRef
25.
go back to reference Kuhn KG, Nielsen EM, Molbak K, Ethelberg S. Epidemiology of campylobacteriosis in Denmark 2000-2015. Zoonoses Public Health. 2018;65:59–66.CrossRef Kuhn KG, Nielsen EM, Molbak K, Ethelberg S. Epidemiology of campylobacteriosis in Denmark 2000-2015. Zoonoses Public Health. 2018;65:59–66.CrossRef
26.
go back to reference Stutman HR. Salmonella, Shigella, and campylobacter: common bacterial causes of infectious diarrhea. Pediatr Ann. 1994;23:538–43.CrossRef Stutman HR. Salmonella, Shigella, and campylobacter: common bacterial causes of infectious diarrhea. Pediatr Ann. 1994;23:538–43.CrossRef
27.
go back to reference OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: annual report of the OzFoodNet network, 2011. Commun Dis Intell Q Rep. 2015;39:E236–64. OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: annual report of the OzFoodNet network, 2011. Commun Dis Intell Q Rep. 2015;39:E236–64.
28.
go back to reference Sears A, Baker MG, Wilson N, Marshall J, Muellner P, Campbell DM, Lake RJ, French NP. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg Infect Dis. 2011;17:1007–15.CrossRef Sears A, Baker MG, Wilson N, Marshall J, Muellner P, Campbell DM, Lake RJ, French NP. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg Infect Dis. 2011;17:1007–15.CrossRef
29.
go back to reference Eberhart-Phillips J, Walker N, Garrett N, Bell D, Sinclair D, Rainger W, Bates M. Campylobacteriosis in New Zealand: results of a case-control study. J Epidemiol Community Health. 1997;51:686–91.CrossRef Eberhart-Phillips J, Walker N, Garrett N, Bell D, Sinclair D, Rainger W, Bates M. Campylobacteriosis in New Zealand: results of a case-control study. J Epidemiol Community Health. 1997;51:686–91.CrossRef
30.
go back to reference Chen SM, Ni YH, Chen HL, Chang MH. Microbial etiology of acute gastroenteritis in hospitalized children in Taiwan. J Formos Med Assoc. 2006;105:964–70.CrossRef Chen SM, Ni YH, Chen HL, Chang MH. Microbial etiology of acute gastroenteritis in hospitalized children in Taiwan. J Formos Med Assoc. 2006;105:964–70.CrossRef
31.
go back to reference Su LH, Chiu CH. Salmonella: clinical importance and evolution of nomenclature. Chang Gung Med J. 2007;30:210–9.PubMed Su LH, Chiu CH. Salmonella: clinical importance and evolution of nomenclature. Chang Gung Med J. 2007;30:210–9.PubMed
32.
go back to reference Jaros P, Cookson AL, Campbell DM, Besser TE, Shringi S, Mackereth GF, Lim E, Lopez L, Dufour M, Marshall JC, et al. A prospective case-control and molecular epidemiological study of human cases of Shiga toxin-producing Escherichia coli in New Zealand. BMC Infect Dis. 2013;13:450.CrossRef Jaros P, Cookson AL, Campbell DM, Besser TE, Shringi S, Mackereth GF, Lim E, Lopez L, Dufour M, Marshall JC, et al. A prospective case-control and molecular epidemiological study of human cases of Shiga toxin-producing Escherichia coli in New Zealand. BMC Infect Dis. 2013;13:450.CrossRef
33.
go back to reference Werber D, Behnke SC, Fruth A, Merle R, Menzler S, Glaser S, Kreienbrock L, Prager R, Tschape H, Roggentin P, et al. Shiga toxin-producing Escherichia coli infection in Germany: different risk factors for different age groups. Am J Epidemiol. 2007;165:425–34.CrossRef Werber D, Behnke SC, Fruth A, Merle R, Menzler S, Glaser S, Kreienbrock L, Prager R, Tschape H, Roggentin P, et al. Shiga toxin-producing Escherichia coli infection in Germany: different risk factors for different age groups. Am J Epidemiol. 2007;165:425–34.CrossRef
34.
go back to reference Rivas M, Sosa-Estani S, Rangel J, Caletti MG, Valles P, Roldan CD, Balbi L, Marsano de Mollar MC, Amoedo D, Miliwebsky E, et al. Risk factors for sporadic Shiga toxin-producing Escherichia coli infections in children, Argentina. Emerg Infect Dis. 2008;14:763–71.CrossRef Rivas M, Sosa-Estani S, Rangel J, Caletti MG, Valles P, Roldan CD, Balbi L, Marsano de Mollar MC, Amoedo D, Miliwebsky E, et al. Risk factors for sporadic Shiga toxin-producing Escherichia coli infections in children, Argentina. Emerg Infect Dis. 2008;14:763–71.CrossRef
35.
go back to reference Baker MG, Barnard LT, Kvalsvig A, Verrall A, Zhang J, Keall M, Wilson N, Wall T, Howden-Chapman P. Increasing incidence of serious infectious diseases and inequalities in New Zealand: a national epidemiological study. Lancet. 2012;379:1112–9.CrossRef Baker MG, Barnard LT, Kvalsvig A, Verrall A, Zhang J, Keall M, Wilson N, Wall T, Howden-Chapman P. Increasing incidence of serious infectious diseases and inequalities in New Zealand: a national epidemiological study. Lancet. 2012;379:1112–9.CrossRef
36.
go back to reference Dong H, Mitchell P. Community and Public Health, Canterbury District Health Board: South Island Campylobacteriosis. A review of notifications 2010–2012 by district health board. Christchurch: Canterbury District Health Board; 2013. Dong H, Mitchell P. Community and Public Health, Canterbury District Health Board: South Island Campylobacteriosis. A review of notifications 2010–2012 by district health board. Christchurch: Canterbury District Health Board; 2013.
38.
go back to reference Minister of Health and Associate Minister of Health. Whakatātaka Tuarua: Māori Health Action Plan 2006–2011. Wellington: Ministry of Health; 2006. Minister of Health and Associate Minister of Health. Whakatātaka Tuarua: Māori Health Action Plan 2006–2011. Wellington: Ministry of Health; 2006.
39.
go back to reference Lake R, Adlam B, Perera S. Acute Gastrointestinal Illness (AGI) Study: Final Study Report. (ESR) IoESaRL ed. Christchurch: Institute of Environmental Science and Research Ltd (ESR); 2009. Lake R, Adlam B, Perera S. Acute Gastrointestinal Illness (AGI) Study: Final Study Report. (ESR) IoESaRL ed. Christchurch: Institute of Environmental Science and Research Ltd (ESR); 2009.
Metadata
Title
The epidemiology of non-viral gastroenteritis in New Zealand children from 1997 to 2015: an observational study
Authors
Emma Jeffs
Jonathan Williman
Natalie Martin
Cheryl Brunton
Tony Walls
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-018-6229-4

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue