Skip to main content
Top
Published in: BMC Pediatrics 1/2020

01-12-2020 | Rhizotomy | Research article

Gender differences in treatments and interventions received by children and adolescents with cerebral palsy

Authors: Annika Lundkvist Josenby, Tomasz Czuba, Ann I. Alriksson-Schmidt

Published in: BMC Pediatrics | Issue 1/2020

Login to get access

Abstract

Background

In the Swedish population-based follow-up program and national quality registry for individuals with cerebral palsy (CPUP), physiotherapy (PT) and occupational therapy (OT) treatments are regularly recorded along with functional status. By Swedish law, all citizens irrespective of personal characteristics or socioeconomic status, have the right to receive healthcare and medical treatments as applicable. Previous research has shown gender differences in treatments and interventions received by children with cerebral palsy (CP). The purpose of this study was to examine differences in treatments and interventions by gender and place of birth in children and adolescents participating in CPUP.

Methods

This was a cross-sectional registry study. Data from the latest PT (n = 2635) and OT assessment forms (n = 3480) in CPUP were extracted for individuals aged 0–17 years. Logistic regressions were used to assess the relationships between the outcome variables and gender and place of birth (including an interaction term gender X place of birth), adjusted for age, Gross Motor Function Classification System (GMFCS) levels and spasticity scores for PT interventions and Manual Ability Classification System (MACS) for OT interventions.

Results

Results are presented as odds ratios [95% confidence intervals] and p-values. Girls were significantly more likely to have spinal braces than boys; 1.54 [1.07, 2.22] p < 0.05, a significant interaction with place of birth indicated fewer spinal braces prescribed to children born outside of the Nordic countries; 0.20 [0.079, 0.53] p < 0.001. Girls were less likely to have undergone selective dorsal rhizotomy (SDR); 0.49 [0.25, 0.94] p < 0.05. Individuals born outside of the Nordic countries, were significantly less likely to have received intrathecal baclofen (ITB) 0.27 [0.074, 0.98] p < 0.05.

Conclusions

Of the treatments prescribed, gender differences were observed for spinal braces and having undergone SDR. A statistically significant difference based on place of birth was noted for spinal bracing and having received ITB treatment. Other PT and OT treatments were associated with age, level of spasticity, and functional severity as classified using the GMFCS and the MACS. Increased awareness of differences based on gender, and where a child is born, could be obtained by inter- and intraprofessional discussions.
Literature
1.
go back to reference Wong PK. Medication adherence in patients with rheumatoid arthritis: why do patients not take what we prescribe? Rheumatol Int. 2016;36(11):1535–42.CrossRef Wong PK. Medication adherence in patients with rheumatoid arthritis: why do patients not take what we prescribe? Rheumatol Int. 2016;36(11):1535–42.CrossRef
2.
3.
go back to reference Schultz PL, Baker J. Teaching strategies to increase nursing student acceptance and Management of Unconscious Bias. J Nurs Educ. 2017;56(11):692–6.CrossRef Schultz PL, Baker J. Teaching strategies to increase nursing student acceptance and Management of Unconscious Bias. J Nurs Educ. 2017;56(11):692–6.CrossRef
4.
go back to reference Haider AH, Sexton J, Sriram N, Cooper LA, Efron DT, Swoboda S, et al. Association of unconscious race and social class bias with vignette-based clinical assessments by medical students. JAMA. 2011;306(9):942–51.CrossRef Haider AH, Sexton J, Sriram N, Cooper LA, Efron DT, Swoboda S, et al. Association of unconscious race and social class bias with vignette-based clinical assessments by medical students. JAMA. 2011;306(9):942–51.CrossRef
5.
go back to reference Krieger N. Discrimination and health inequities. Int J Health Serv. 2014;44(4):643–710.CrossRef Krieger N. Discrimination and health inequities. Int J Health Serv. 2014;44(4):643–710.CrossRef
6.
go back to reference Smithers-Sheedy H, Badawi N, Blair E, Cans C, Himmelmann K, Krageloh-Mann I, et al. What constitutes cerebral palsy in the twenty-first century? Dev Med Child Neurol. 2014;56(4):323–8.CrossRef Smithers-Sheedy H, Badawi N, Blair E, Cans C, Himmelmann K, Krageloh-Mann I, et al. What constitutes cerebral palsy in the twenty-first century? Dev Med Child Neurol. 2014;56(4):323–8.CrossRef
7.
go back to reference Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.PubMed Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.PubMed
8.
go back to reference Alriksson-Schmidt A, Hagglund G. Pain in children and adolescents with cerebral palsy: a population-based registry study. Acta Paediatr. 2016;105(6):665–70.CrossRef Alriksson-Schmidt A, Hagglund G. Pain in children and adolescents with cerebral palsy: a population-based registry study. Acta Paediatr. 2016;105(6):665–70.CrossRef
9.
go back to reference Surveillance of Cerebral Palsy in E. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol. 2000;42(12):816–24.CrossRef Surveillance of Cerebral Palsy in E. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol. 2000;42(12):816–24.CrossRef
10.
go back to reference Oskoui M, Coutinho F, Dykeman J, Jette N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509–19.CrossRef Oskoui M, Coutinho F, Dykeman J, Jette N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509–19.CrossRef
11.
go back to reference Himmelmann K, Uvebrant P. The panorama of cerebral palsy in Sweden. XI. Changing patterns in the birth-year period 2003-2006. Acta Paediatr. 2014;103(6):618–24.CrossRef Himmelmann K, Uvebrant P. The panorama of cerebral palsy in Sweden. XI. Changing patterns in the birth-year period 2003-2006. Acta Paediatr. 2014;103(6):618–24.CrossRef
12.
go back to reference Chounti A, Hagglund G, Wagner P, Westbom L. Sex differences in cerebral palsy incidence and functional ability: a total population study. Acta Paediatr. 2013;102(7):712–7.CrossRef Chounti A, Hagglund G, Wagner P, Westbom L. Sex differences in cerebral palsy incidence and functional ability: a total population study. Acta Paediatr. 2013;102(7):712–7.CrossRef
13.
go back to reference Sellier E, Platt MJ, Andersen GL, Krageloh-Mann I, De La Cruz J, Cans C, et al. Decreasing prevalence in cerebral palsy: a multi-site European population-based study, 1980 to 2003. Dev Med Child Neurol. 2016;58(1):85–92.CrossRef Sellier E, Platt MJ, Andersen GL, Krageloh-Mann I, De La Cruz J, Cans C, et al. Decreasing prevalence in cerebral palsy: a multi-site European population-based study, 1980 to 2003. Dev Med Child Neurol. 2016;58(1):85–92.CrossRef
14.
go back to reference Palisano RJ, Cameron D, Rosenbaum PL, Walter SD, Russell D. Stability of the gross motor function classification system. Dev Med Child Neurol. 2006;48(6):424–8.CrossRef Palisano RJ, Cameron D, Rosenbaum PL, Walter SD, Russell D. Stability of the gross motor function classification system. Dev Med Child Neurol. 2006;48(6):424–8.CrossRef
15.
go back to reference Eliasson AC, Krumlinde-Sundholm L, Rosblad B, Beckung E, Arner M, Ohrvall AM, et al. The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549–54.CrossRef Eliasson AC, Krumlinde-Sundholm L, Rosblad B, Beckung E, Arner M, Ohrvall AM, et al. The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549–54.CrossRef
16.
go back to reference Hidecker MJ, Paneth N, Rosenbaum PL, Kent RD, Lillie J, Eulenberg JB, et al. Developing and validating the communication function classification system for individuals with cerebral palsy. Dev Med Child Neurol. 2011;53(8):704–10.CrossRef Hidecker MJ, Paneth N, Rosenbaum PL, Kent RD, Lillie J, Eulenberg JB, et al. Developing and validating the communication function classification system for individuals with cerebral palsy. Dev Med Child Neurol. 2011;53(8):704–10.CrossRef
17.
go back to reference Rosenbaum P, Eliasson AC, Hidecker MJ, Palisano RJ. Classification in childhood disability: focusing on function in the 21st century. J Child Neurol. 2014;29(8):1036–45.CrossRef Rosenbaum P, Eliasson AC, Hidecker MJ, Palisano RJ. Classification in childhood disability: focusing on function in the 21st century. J Child Neurol. 2014;29(8):1036–45.CrossRef
18.
go back to reference Hagglund G, Alriksson-Schmidt A, Lauge-Pedersen H, Rodby-Bousquet E, Wagner P, Westbom L. Prevention of dislocation of the hip in children with cerebral palsy: 20-year results of a population-based prevention programme. Bone Joint J. 2014;96-B(11):1546–52.CrossRef Hagglund G, Alriksson-Schmidt A, Lauge-Pedersen H, Rodby-Bousquet E, Wagner P, Westbom L. Prevention of dislocation of the hip in children with cerebral palsy: 20-year results of a population-based prevention programme. Bone Joint J. 2014;96-B(11):1546–52.CrossRef
19.
go back to reference Andersen GL, Irgens LM, Haagaas I, Skranes JS, Meberg AE, Vik T. Cerebral palsy in Norway: prevalence, subtypes and severity. Eur J Paediatr Neurol. 2008;12(1):4–13.CrossRef Andersen GL, Irgens LM, Haagaas I, Skranes JS, Meberg AE, Vik T. Cerebral palsy in Norway: prevalence, subtypes and severity. Eur J Paediatr Neurol. 2008;12(1):4–13.CrossRef
20.
go back to reference Christensen D, Van Naarden BK, Doernberg NS, Maenner MJ, Arneson CL, Durkin MS, et al. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning - autism and developmental disabilities monitoring network, USA, 2008. Dev Med Child Neurol. 2014;56(1):59–65.CrossRef Christensen D, Van Naarden BK, Doernberg NS, Maenner MJ, Arneson CL, Durkin MS, et al. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning - autism and developmental disabilities monitoring network, USA, 2008. Dev Med Child Neurol. 2014;56(1):59–65.CrossRef
21.
go back to reference Howard J, Soo B, Graham HK, Boyd RN, Reid S, Lanigan A, et al. Cerebral palsy in Victoria: motor types, topography and gross motor function. J Paediatr Child Health. 2005;41(9–10):479–83.CrossRef Howard J, Soo B, Graham HK, Boyd RN, Reid S, Lanigan A, et al. Cerebral palsy in Victoria: motor types, topography and gross motor function. J Paediatr Child Health. 2005;41(9–10):479–83.CrossRef
22.
go back to reference Franzen M, Hagglund G, Alriksson-Schmidt A. Treatment with Botulinum toxin a in a total population of children with cerebral palsy - a retrospective cohort registry study. BMC Musculoskelet Disord. 2017;18(1):520.CrossRef Franzen M, Hagglund G, Alriksson-Schmidt A. Treatment with Botulinum toxin a in a total population of children with cerebral palsy - a retrospective cohort registry study. BMC Musculoskelet Disord. 2017;18(1):520.CrossRef
23.
go back to reference Degerstedt F, Wiklund M, Enberg B. Physiotherapeutic interventions and physical activity for children in Northern Sweden with cerebral palsy: a register study from equity and gender perspectives. Glob Health Action. 2016;10(sup2):1272236.CrossRef Degerstedt F, Wiklund M, Enberg B. Physiotherapeutic interventions and physical activity for children in Northern Sweden with cerebral palsy: a register study from equity and gender perspectives. Glob Health Action. 2016;10(sup2):1272236.CrossRef
24.
go back to reference Symons FJ, Rivard PF, Nugent AC, Tervo RC. Parent evaluation of spasticity treatment in cerebral palsy using botulinum toxin type a. Arch Phys Med Rehabil. 2006;87(12):1658–60.CrossRef Symons FJ, Rivard PF, Nugent AC, Tervo RC. Parent evaluation of spasticity treatment in cerebral palsy using botulinum toxin type a. Arch Phys Med Rehabil. 2006;87(12):1658–60.CrossRef
25.
go back to reference Alriksson-Schmidt AI, Arner M, Westbom L, Krumlinde-Sundholm L, Nordmark E, Rodby-Bousquet E, et al. A combined surveillance program and quality register improves management of childhood disability. Disabil Rehabil. 2017;39(8):830–6.CrossRef Alriksson-Schmidt AI, Arner M, Westbom L, Krumlinde-Sundholm L, Nordmark E, Rodby-Bousquet E, et al. A combined surveillance program and quality register improves management of childhood disability. Disabil Rehabil. 2017;39(8):830–6.CrossRef
26.
go back to reference Almasri NA, Saleh M, Abu-Dahab S, Malkawi SH, Nordmark E. Development of a cerebral palsy follow-up registry in Jordan (CPUP-Jordan). Child Care Health Dev. 2018;44(1):131–9.CrossRef Almasri NA, Saleh M, Abu-Dahab S, Malkawi SH, Nordmark E. Development of a cerebral palsy follow-up registry in Jordan (CPUP-Jordan). Child Care Health Dev. 2018;44(1):131–9.CrossRef
27.
go back to reference Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.CrossRef Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.CrossRef
28.
go back to reference Wood E, Rosenbaum P. The gross motor function classification system for cerebral palsy: a study of reliability and stability over time. Dev Med Child Neurol. 2000;42(5):292–6.CrossRef Wood E, Rosenbaum P. The gross motor function classification system for cerebral palsy: a study of reliability and stability over time. Dev Med Child Neurol. 2000;42(5):292–6.CrossRef
29.
go back to reference Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised gross motor function classification system. Dev Med Child Neurol. 2008;50(10):744–50.CrossRef Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised gross motor function classification system. Dev Med Child Neurol. 2008;50(10):744–50.CrossRef
30.
go back to reference Alriksson-Schmidt A, Nordmark E, Czuba T, Westbom L. Stability of the gross motor function classification system in children and adolescents with cerebral palsy: a retrospective cohort registry study. Dev Med Child Neurol. 2017;59(6):641–6.CrossRef Alriksson-Schmidt A, Nordmark E, Czuba T, Westbom L. Stability of the gross motor function classification system in children and adolescents with cerebral palsy: a retrospective cohort registry study. Dev Med Child Neurol. 2017;59(6):641–6.CrossRef
31.
go back to reference Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.CrossRef Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.CrossRef
32.
go back to reference StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC; 2017. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC; 2017.
33.
go back to reference Bugler KE, Gaston MS, Robb JE. Distribution and motor ability of children with cerebral palsy in Scotland: a registry analysis. Scott Med J. 2019;64(1):16–21.CrossRef Bugler KE, Gaston MS, Robb JE. Distribution and motor ability of children with cerebral palsy in Scotland: a registry analysis. Scott Med J. 2019;64(1):16–21.CrossRef
34.
go back to reference Hagglund G, Pettersson K, Czuba T, Persson-Bunke M, Rodby-Bousquet E. Incidence of scoliosis in cerebral palsy. Acta Orthop. 2018;89(4):443–7.CrossRef Hagglund G, Pettersson K, Czuba T, Persson-Bunke M, Rodby-Bousquet E. Incidence of scoliosis in cerebral palsy. Acta Orthop. 2018;89(4):443–7.CrossRef
35.
go back to reference Tedroff K, Hagglund G, Miller F. Long-term effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2019. Tedroff K, Hagglund G, Miller F. Long-term effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2019.
36.
go back to reference Romeo DM, Sini F, Brogna C, Albamonte E, Ricci D, Mercuri E. Sex differences in cerebral palsy on neuromotor outcome: a critical review. Dev Med Child Neurol. 2016;58(8):809–13.CrossRef Romeo DM, Sini F, Brogna C, Albamonte E, Ricci D, Mercuri E. Sex differences in cerebral palsy on neuromotor outcome: a critical review. Dev Med Child Neurol. 2016;58(8):809–13.CrossRef
Metadata
Title
Gender differences in treatments and interventions received by children and adolescents with cerebral palsy
Authors
Annika Lundkvist Josenby
Tomasz Czuba
Ann I. Alriksson-Schmidt
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Rhizotomy
Published in
BMC Pediatrics / Issue 1/2020
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-1926-4

Other articles of this Issue 1/2020

BMC Pediatrics 1/2020 Go to the issue