Skip to main content
Top
Published in: BMC Pediatrics 1/2020

01-12-2020 | Obesity | Research article

Klotho and fibroblast growth factors 19 and 21 serum concentrations in children and adolescents with normal body weight and obesity and their associations with metabolic parameters

Authors: Anna Socha-Banasiak, Arkadiusz Michalak, Krzysztof Pacześ, Zuzanna Gaj, Wojciech Fendler, Anna Socha, Ewa Głowacka, Karolina Kapka, Violetta Gołąbek, Elżbieta Czkwianianc

Published in: BMC Pediatrics | Issue 1/2020

Login to get access

Abstract

Background

Fibroblast growth factor 19 (FGF19), fibroblast growth factor 21 (FGF21) and Klotho are regulators of energy homeostasis. However, in the pediatric population, the relationships between obesity, metabolic disorders and the aforementioned factors have not been clearly investigated. We analyzed the role of FGF19, FGF21 and Klotho protein in children with normal body weight as well as in overweight and obese subjects and explored their associations with insulin resistance (IR) and metabolic syndrome (MS) and its components.

Methods

This was a cross-sectional study conducted in a group of hospitalized children and adolescents. Laboratory investigations included serum analysis of FGF19, FGF21, and Klotho with ELISA kits as well as the analysis of the lipid profile and ALT serum concentrations. Moreover, each subject underwent an oral glucose tolerance test (OGTT) with fasting insulinemia measurement to detect glucose tolerance abnormalities and calculate the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. Furthermore, the clinical analysis included blood pressure measurement, body fat percentage estimation and assessment of the prevalence of MS and its components.

Results

The study was conducted with 174 children/adolescents aged 6–17 years with normal body weight (N = 48), obesity (N = 92) and overweight (N = 34). Klotho concentration was significantly higher in the obese children [median 168.6 pg/ml (90.2 to 375.9)]) than in the overweight [131.3 pg/ml (78.0 to 313.0)] and normal-body-weight subjects [116.6 pg/ml (38.5 to 163.9)] (p = 0.0334) and was also significantly higher in insulin-resistant children than in insulin-sensitive children [185.3 pg/ml (102.1 to 398.2) vs 132.6 pg/ml (63.9 to 275.6), p = 0.0283]. FGF21 was elevated in patients with MS compared to the FGF21 levels in other subjects [136.2 pg/ml (86.5 to 239.9) vs 82.6 pg/ml (41.8 to 152.4), p = 0.0286]. The multivariable model showed that FGF19 was an independent predictor of IR after adjusting for pubertal stage and BMI Z-score.

Conclusions

Klotho levels were associated with body weight status in children and adolescents. Moreover, Klotho, FGF19 and FGF21 concentrations correlated with IR status and/or components of MS.
Literature
1.
go back to reference Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9945):766–81. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9945):766–81.
2.
go back to reference Kułaga Z, Grajda A, Gurzkowska B, Wojtylo MA, Gozdz M, Litwin MS. The prevalence of overweight and obesity among polish school-aged children and adolescents. Przegl Epidemiol. 2016;70(4):641–51.PubMed Kułaga Z, Grajda A, Gurzkowska B, Wojtylo MA, Gozdz M, Litwin MS. The prevalence of overweight and obesity among polish school-aged children and adolescents. Przegl Epidemiol. 2016;70(4):641–51.PubMed
3.
go back to reference Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132(6):2169–80.CrossRef Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132(6):2169–80.CrossRef
4.
go back to reference Korner A, Kratzsch J, Gausche R, Schaab M, Erbs S, Kiess W. New predictors of the metabolic syndrome in children-role of adipocytokines. Pediatric Res. 2007;61(6):640–5.CrossRef Korner A, Kratzsch J, Gausche R, Schaab M, Erbs S, Kiess W. New predictors of the metabolic syndrome in children-role of adipocytokines. Pediatric Res. 2007;61(6):640–5.CrossRef
5.
go back to reference Zhang F, Yu L, Lin X, Cheng P, He L, Li X, et al. Minireview: roles of fibroblast growth factors 19 and 21 in metabolic regulation and chronic diseases. Mol Endocrinol. 2015;29(10):1400–13.CrossRef Zhang F, Yu L, Lin X, Cheng P, He L, Li X, et al. Minireview: roles of fibroblast growth factors 19 and 21 in metabolic regulation and chronic diseases. Mol Endocrinol. 2015;29(10):1400–13.CrossRef
7.
go back to reference Dolegowska K, Marchelek-Mysliwiec M, Nowosiad-Magda M, Slawinski M, Dolegowska B. FGF19 subfamily members: FGF19 and FGF21. J Physiol Biochem. 2019;75(2):229–40.CrossRef Dolegowska K, Marchelek-Mysliwiec M, Nowosiad-Magda M, Slawinski M, Dolegowska B. FGF19 subfamily members: FGF19 and FGF21. J Physiol Biochem. 2019;75(2):229–40.CrossRef
8.
go back to reference Martínez-Garza Ú, Torres-Oteros D, Yarritu-Gallego A, Marrero PF, Haro D, Relat J. Fibroblast growth factor 21 and the adaptive response to nutritional challenges. Int J Mol Sci. 2019;20(19):4692.CrossRef Martínez-Garza Ú, Torres-Oteros D, Yarritu-Gallego A, Marrero PF, Haro D, Relat J. Fibroblast growth factor 21 and the adaptive response to nutritional challenges. Int J Mol Sci. 2019;20(19):4692.CrossRef
9.
go back to reference Somm E, Jornayvaz FR. Fibroblast growth factor 15/19: from basic functions to therapeutic perspectives. Endocr Rev. 2018;39(6):960–89.CrossRef Somm E, Jornayvaz FR. Fibroblast growth factor 15/19: from basic functions to therapeutic perspectives. Endocr Rev. 2018;39(6):960–89.CrossRef
10.
go back to reference Gómez-Ambrosi J, Gallego-Escuredo JM, Catalán V, Rodriguez A, Domingo P, Moncada R, et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr. 2017;36(3):861–8.CrossRef Gómez-Ambrosi J, Gallego-Escuredo JM, Catalán V, Rodriguez A, Domingo P, Moncada R, et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr. 2017;36(3):861–8.CrossRef
11.
go back to reference Li G, Yin J, Fu J, Li L, Grant SFA, Li C, et al. FGF21 deficiency is associated with childhood obesity, insulin resistance and hypoadiponectinaemia: the BCAMS study. Diabetes Metab. 2017;43(3):253–60.CrossRef Li G, Yin J, Fu J, Li L, Grant SFA, Li C, et al. FGF21 deficiency is associated with childhood obesity, insulin resistance and hypoadiponectinaemia: the BCAMS study. Diabetes Metab. 2017;43(3):253–60.CrossRef
12.
go back to reference Wojcik M, Janus D, Dolezal-Oltarzewska K, Kalicka-Kasperczyk A, Poplawska K, Drozdz D, et al. A decrease in fasting FGF19 levels is associated with the development of non-alcoholic fatty liver disease in obese adolescents. J Pediatr Endocrinol Metab. 2012;25(11–12):1089–93.PubMed Wojcik M, Janus D, Dolezal-Oltarzewska K, Kalicka-Kasperczyk A, Poplawska K, Drozdz D, et al. A decrease in fasting FGF19 levels is associated with the development of non-alcoholic fatty liver disease in obese adolescents. J Pediatr Endocrinol Metab. 2012;25(11–12):1089–93.PubMed
13.
go back to reference Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, et al. α-Klotho expression in human tissues. J Clin Endocrinol Metab. 2015;100(10):1308–18.CrossRef Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, et al. α-Klotho expression in human tissues. J Clin Endocrinol Metab. 2015;100(10):1308–18.CrossRef
15.
go back to reference Rubinek T, Shahmoon S, Shabtay-Orbach A, Ben Ami M, Levy-Shraga Y, Mazor-Aronovitch K, et al. Klotho response to treatment with growth hormone and the role of IGF-I as a mediator. Metabolism. 2016;65(11):1597–604.CrossRef Rubinek T, Shahmoon S, Shabtay-Orbach A, Ben Ami M, Levy-Shraga Y, Mazor-Aronovitch K, et al. Klotho response to treatment with growth hormone and the role of IGF-I as a mediator. Metabolism. 2016;65(11):1597–604.CrossRef
16.
go back to reference Ohnishi M, Kato S, Akiyoshi J, Atfi A, Rozzaque MS. Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting klotho functions. FASEB J. 2011;25(6):2031–9.CrossRef Ohnishi M, Kato S, Akiyoshi J, Atfi A, Rozzaque MS. Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting klotho functions. FASEB J. 2011;25(6):2031–9.CrossRef
17.
go back to reference Amitani M, Asakawa A, Amitani H, Kaimoto K, Sameshima N, Koyama KI, et al. Plasma klotho levels decrease in both anorexia nervosa and obesity. Nutrition. 2013;29(9):1106–9.CrossRef Amitani M, Asakawa A, Amitani H, Kaimoto K, Sameshima N, Koyama KI, et al. Plasma klotho levels decrease in both anorexia nervosa and obesity. Nutrition. 2013;29(9):1106–9.CrossRef
19.
go back to reference Wojcicki JM, Prather AA, Epel E, Wang D, Dubal DB. Cord blood klotho levels are inversely associated with leptin in healthy Latino neonates at risk for obesity. J Pediatr Endocrinol Metab. 2018;31(5):515–20.CrossRef Wojcicki JM, Prather AA, Epel E, Wang D, Dubal DB. Cord blood klotho levels are inversely associated with leptin in healthy Latino neonates at risk for obesity. J Pediatr Endocrinol Metab. 2018;31(5):515–20.CrossRef
20.
go back to reference Horvath A, Rachtan-Janicka J. Energy requirements. In: Szajewska H, Horvath A, editors. Feeding and nutritional treatment of children and adolescents (in polish). Kraków: Medycyna Praktyczna; 2017. p. 22–31. Horvath A, Rachtan-Janicka J. Energy requirements. In: Szajewska H, Horvath A, editors. Feeding and nutritional treatment of children and adolescents (in polish). Kraków: Medycyna Praktyczna; 2017. p. 22–31.
21.
go back to reference Kułaga Z, Grajda A, Gurzkowska B, Góźdź M, Wojtyło M, Swiąder A, et al. Polish 2012 growth references for preschool children. Eur J Pediatr. 2013;172(6):753–61.CrossRef Kułaga Z, Grajda A, Gurzkowska B, Góźdź M, Wojtyło M, Swiąder A, et al. Polish 2012 growth references for preschool children. Eur J Pediatr. 2013;172(6):753–61.CrossRef
22.
go back to reference Kułaga Z, Różdżyńska-Świątkowska A, Grajda A, Gurzkowska B, Wojtyło M, Góźdź M, et al. Percentile charts for growth and nutritional status assessment in polish children and adolescents from birth to 18 year of age. Standrady Medyczne/Pediatria. 2015;12:119–35. Kułaga Z, Różdżyńska-Świątkowska A, Grajda A, Gurzkowska B, Wojtyło M, Góźdź M, et al. Percentile charts for growth and nutritional status assessment in polish children and adolescents from birth to 18 year of age. Standrady Medyczne/Pediatria. 2015;12:119–35.
23.
go back to reference Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. Skin fold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709–23.PubMed Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. Skin fold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709–23.PubMed
24.
go back to reference Kułaga Z, Grajda A, Gurzkowska B, Góźdź M, Wojtyło M, Świąder A, et al. Centile charts for blood pressure assessment in children and adolescents aged 3-18 years. Standardy Medyczne/Pediatria. 2013;1:22–30. Kułaga Z, Grajda A, Gurzkowska B, Góźdź M, Wojtyło M, Świąder A, et al. Centile charts for blood pressure assessment in children and adolescents aged 3-18 years. Standardy Medyczne/Pediatria. 2013;1:22–30.
25.
go back to reference Chipkevitch E. Clinical assessment of sexual maturation in adolescents. J Pediatr. 2001;77(Suppl 2):S135–42.CrossRef Chipkevitch E. Clinical assessment of sexual maturation in adolescents. J Pediatr. 2001;77(Suppl 2):S135–42.CrossRef
26.
go back to reference Kurtoğlu S, Hatipoğlu N, Mazıcıoğlu M, Kendirici M, Keskin M, Kondolot M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol. 2010;2(3):100–6.CrossRef Kurtoğlu S, Hatipoğlu N, Mazıcıoğlu M, Kendirici M, Keskin M, Kondolot M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol. 2010;2(3):100–6.CrossRef
27.
go back to reference Zimmet P, Alberti KG, Kaufman F. The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatr Diabetes. 2007;8:299–306.CrossRef Zimmet P, Alberti KG, Kaufman F. The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatr Diabetes. 2007;8:299–306.CrossRef
28.
go back to reference Jin QR, Bando Y, Miyawaki K, Shikama Y, Kosugi C, Aki N, et al. Correlation of fibroblast growth factor 21 serum levels with metabolic parameters in Japanese subjects. J Med Investig. 2014;61(1–2):28–34.CrossRef Jin QR, Bando Y, Miyawaki K, Shikama Y, Kosugi C, Aki N, et al. Correlation of fibroblast growth factor 21 serum levels with metabolic parameters in Japanese subjects. J Med Investig. 2014;61(1–2):28–34.CrossRef
29.
go back to reference Lee Y, Lim S, Hong ES, Kim JH, Moon MK, Chun EJ, et al. Serum FGF21 concentration is associated with hypertriglyceridaemia, hyperinsulinaemia and pericardial fat accumulation, independently of obesity, but not with current coronary artery status. Clin Endocrinol. 2014;80(1):57–64.CrossRef Lee Y, Lim S, Hong ES, Kim JH, Moon MK, Chun EJ, et al. Serum FGF21 concentration is associated with hypertriglyceridaemia, hyperinsulinaemia and pericardial fat accumulation, independently of obesity, but not with current coronary artery status. Clin Endocrinol. 2014;80(1):57–64.CrossRef
30.
go back to reference Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627–35.CrossRef Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627–35.CrossRef
31.
go back to reference Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223–41.CrossRef Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223–41.CrossRef
32.
go back to reference Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018–27.CrossRef Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018–27.CrossRef
33.
go back to reference Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007;148(2):774–81.CrossRef Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007;148(2):774–81.CrossRef
34.
go back to reference Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59(11):2781–9.CrossRef Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59(11):2781–9.CrossRef
35.
go back to reference Baek J, Nam HK, Rhie YJ, Lee KH. Serum FGF21 levels in obese Korean children and adolescents. J Obes Metab Syndr. 2017;26(3):204–9.CrossRef Baek J, Nam HK, Rhie YJ, Lee KH. Serum FGF21 levels in obese Korean children and adolescents. J Obes Metab Syndr. 2017;26(3):204–9.CrossRef
36.
go back to reference Reinehr T, Woelfle J, Wunsch R, Roth CL. Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: a longitudinal analysis. J Clin Endocrinol Metab. 2012;97(6):2143–50.CrossRef Reinehr T, Woelfle J, Wunsch R, Roth CL. Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: a longitudinal analysis. J Clin Endocrinol Metab. 2012;97(6):2143–50.CrossRef
38.
go back to reference Gallego-Escuredo JM, Gómez-Ambrosi J, Catalan V, Domingo P, Giralt M, Frühbeck G, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes. 2015;39(1):121–9.CrossRef Gallego-Escuredo JM, Gómez-Ambrosi J, Catalan V, Domingo P, Giralt M, Frühbeck G, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes. 2015;39(1):121–9.CrossRef
39.
go back to reference Wu X, Ge H, Baribault H, Gupte J, Weiszmann J, Lemon B, et al. Dual actions of fibroblast growth factor 19 on lipid metabolism. J Lipid Res. 2013;54(2):325–32.CrossRef Wu X, Ge H, Baribault H, Gupte J, Weiszmann J, Lemon B, et al. Dual actions of fibroblast growth factor 19 on lipid metabolism. J Lipid Res. 2013;54(2):325–32.CrossRef
40.
go back to reference Marcelin G, Jo YH, Li X, Schwartz GJ, Zhang Y, Dun NJ, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab. 2013;3(1):19–28.CrossRef Marcelin G, Jo YH, Li X, Schwartz GJ, Zhang Y, Dun NJ, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab. 2013;3(1):19–28.CrossRef
41.
go back to reference Vos MB, Abrams SH, Barlow SE, Caprio S, Daniels SR, Kohli R, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the expert committee on NAFLD (ECON) and the north American Society of Pediatric Gastroenterology, Hepatology and nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64(2):319–34.CrossRef Vos MB, Abrams SH, Barlow SE, Caprio S, Daniels SR, Kohli R, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the expert committee on NAFLD (ECON) and the north American Society of Pediatric Gastroenterology, Hepatology and nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64(2):319–34.CrossRef
42.
go back to reference Chihara Y, Rakugi H, Ishikawa K, Ikushima M, Maekawa Y, Ohta J, et al. Klotho protein promotes adipocyte differentiation. Endocrinology. 2006;147(8):3835–42.CrossRef Chihara Y, Rakugi H, Ishikawa K, Ikushima M, Maekawa Y, Ohta J, et al. Klotho protein promotes adipocyte differentiation. Endocrinology. 2006;147(8):3835–42.CrossRef
43.
go back to reference Razzaque MS. The role of Klotho in energy metabolism. Nat Rev Endocrinol. 2012;8(10):579–87.CrossRef Razzaque MS. The role of Klotho in energy metabolism. Nat Rev Endocrinol. 2012;8(10):579–87.CrossRef
44.
go back to reference Kuro-o M. Klotho and aging. Biochim Biophys Acta. 2009;1790(10):49–1058. Kuro-o M. Klotho and aging. Biochim Biophys Acta. 2009;1790(10):49–1058.
45.
go back to reference Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005;280(45):38029–34.CrossRef Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005;280(45):38029–34.CrossRef
Metadata
Title
Klotho and fibroblast growth factors 19 and 21 serum concentrations in children and adolescents with normal body weight and obesity and their associations with metabolic parameters
Authors
Anna Socha-Banasiak
Arkadiusz Michalak
Krzysztof Pacześ
Zuzanna Gaj
Wojciech Fendler
Anna Socha
Ewa Głowacka
Karolina Kapka
Violetta Gołąbek
Elżbieta Czkwianianc
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2020
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-02199-2

Other articles of this Issue 1/2020

BMC Pediatrics 1/2020 Go to the issue