Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

Predictive multi-imaging biomarkers relevant for visual acuity in idiopathic macular telangiectasis type 1

Authors: Jingli Guo, WenYi Tang, Xiaofeng Ye, Haixiang Wu, Gezhi Xu, Wei Liu, Yongjin Zhang

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

To evaluate the structural changes associated with visual acuity (VA) in patients with idiopathic macular telangiectasia (MT) type 1 using multimodal imaging modalities.

Methods

A retrospective study of 14 patients with MT type 1 and of 10 eyes from 10 healthy individuals as age-matched controls was conducted. The medical records of patients who had undergone colour fundus photography, spectral domain optical coherence tomography (OCT), fluorescein angiography and OCT angiography were reviewed. Central macular thickness (CMT), the areas of macular oedema and ellipsoid zone (EZ) disruption, EZ length, disorganization of the retinal inner layers (DRIL) and external limiting membrane (ELM) disruption, as measured by spectral domain OCT; and vascular density and the foveal avascular zones (FAZ) of the superficial capillary plexus (SCP) and deep capillary plexus (DCP), as measured by OCT angiography, were assessed in MT type 1 eyes and correlated with VA.

Results

The mean baseline best-corrected VA of MT type 1 eyes was 0.45 ± 0.28. The mean CMT was 385.19 ± 75.21 μm in MT type 1 eyes and 252.43 ± 15.77 μm in contralateral eyes (Z = − 4.113, p < 0.001). The mean vessel density of the DCP was lower in MT type 1 eyes (47.25 ± 4.69%) than in contralateral eyes (53.93 ± 2.94%) and normal eyes (59.37 ± 2.50%) (Z = − 3.492, − 4.099; p < 0.001, < 0.001). The baseline logMAR VA was correlated with CMT (r = 0.682, p = 0.007), SCP density (r = − 0.652, p = 0.012), DCP density (r = − 0.700, p = 0.005), total area of EZ disruption (r = 0.649, p = 0.012); and total lengths of EZ (r = 0.681, p = 0.007), ELM (r = 0.699, p = 0.005) and DRIL (r = 0.707, p = 0.005) disruption in the 1-mm-diameter foveal region in MT type 1 eyes.

Conclusions

Decreased DCP density and the presence of DRIL may be predictive biomarkers of VA in MT type 1. CMT, SCP density, total area of EZ disruption, and lengths of EZ and ELM disruption within the 1-mm-diameter central region were strongly associated with VA.
Literature
1.
go back to reference Gass JD, Oyakawa RT. Idiopathic juxtafoveolar retinal telangiectasis. Arch Ophthalmol. 1982;100:769–80.CrossRefPubMed Gass JD, Oyakawa RT. Idiopathic juxtafoveolar retinal telangiectasis. Arch Ophthalmol. 1982;100:769–80.CrossRefPubMed
2.
go back to reference Yannuzzi LA, Bardal AM, Freund KB, Chen KJ, Eandi CM, Blodi B. Idiopathic macular telangiectasia. Arch Ophthalmol. 2006;124:450–60.CrossRefPubMed Yannuzzi LA, Bardal AM, Freund KB, Chen KJ, Eandi CM, Blodi B. Idiopathic macular telangiectasia. Arch Ophthalmol. 2006;124:450–60.CrossRefPubMed
3.
go back to reference Takayama K, Ooto S, Tamura H, Yamashiro K, Otani A, Tsujikawa A, et al. Retinal structural alterations and macular sensitivity in idiopathic macular telangiectasia type 1. Retina. 2012;32:1973–80.CrossRefPubMed Takayama K, Ooto S, Tamura H, Yamashiro K, Otani A, Tsujikawa A, et al. Retinal structural alterations and macular sensitivity in idiopathic macular telangiectasia type 1. Retina. 2012;32:1973–80.CrossRefPubMed
4.
go back to reference Matet A, Daruich A, Dirani A, Ambresin A, Behar-Cohen F. Macular telangiectasia type 1: capillary density and microvascular abnormalities assessed by optical coherence tomography angiography. Am J Ophthalmol. 2016;167:18–30.CrossRefPubMed Matet A, Daruich A, Dirani A, Ambresin A, Behar-Cohen F. Macular telangiectasia type 1: capillary density and microvascular abnormalities assessed by optical coherence tomography angiography. Am J Ophthalmol. 2016;167:18–30.CrossRefPubMed
5.
go back to reference Demirkaya N, van Dijk HW, van Schuppen SM, Abramoff MD, Garvin MK, Sonka M, et al. Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(7):4934–40.CrossRefPubMed Demirkaya N, van Dijk HW, van Schuppen SM, Abramoff MD, Garvin MK, Sonka M, et al. Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(7):4934–40.CrossRefPubMed
6.
go back to reference Abdolrahimzadeh S, Parisi F, Scavella V, Recupero SM. Optical coherence tomography evidence on the correlation of choroidal thickness and age with vascularized retinal layers in normal eyes. Retina. 2016;36(12):2329–38.CrossRefPubMed Abdolrahimzadeh S, Parisi F, Scavella V, Recupero SM. Optical coherence tomography evidence on the correlation of choroidal thickness and age with vascularized retinal layers in normal eyes. Retina. 2016;36(12):2329–38.CrossRefPubMed
7.
go back to reference Wylegala A, Teper S, Dobrowolski D, Wylegala E. Optical coherence angiography: a review. Medicine (Baltimore). 2016;95(41):e4907.CrossRef Wylegala A, Teper S, Dobrowolski D, Wylegala E. Optical coherence angiography: a review. Medicine (Baltimore). 2016;95(41):e4907.CrossRef
8.
go back to reference Ishibazawa A, Nagaoka T, Yokota H, Takahashi A, Omae T, Song YS, et al. Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(14):6247–55.CrossRefPubMed Ishibazawa A, Nagaoka T, Yokota H, Takahashi A, Omae T, Song YS, et al. Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(14):6247–55.CrossRefPubMed
9.
go back to reference Soares M, Neves C, Marques IP, Pires I, Schwartz C, Costa MA, et al. Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography. Br J Ophthalmol. 2017;101(1):62–8.CrossRefPubMed Soares M, Neves C, Marques IP, Pires I, Schwartz C, Costa MA, et al. Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography. Br J Ophthalmol. 2017;101(1):62–8.CrossRefPubMed
10.
go back to reference Kang JW, Yoo R, Jo YH, Kim HC. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina. 2017;37(9):1700–9.CrossRefPubMed Kang JW, Yoo R, Jo YH, Kim HC. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina. 2017;37(9):1700–9.CrossRefPubMed
11.
go back to reference Balaratnasingam C, Inoue M, Ahn S, McCann J, Dhrami-Gavazi E, Yannuzzi LA, et al. Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology. 2016;123(11):2352–67.CrossRefPubMed Balaratnasingam C, Inoue M, Ahn S, McCann J, Dhrami-Gavazi E, Yannuzzi LA, et al. Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology. 2016;123(11):2352–67.CrossRefPubMed
12.
go back to reference Yannuzzi NA, Gregori NZ, Roisman L, Gupta N, Goldhagen BE, Goldhardt R. Fluorescein angiography versus optical coherence tomography angiography in macular telangiectasia type I treated with bevacizumab therapy. Ophthalmic Surg Lasers Imaging Retina. 2017;48(3):263–6.CrossRefPubMed Yannuzzi NA, Gregori NZ, Roisman L, Gupta N, Goldhagen BE, Goldhardt R. Fluorescein angiography versus optical coherence tomography angiography in macular telangiectasia type I treated with bevacizumab therapy. Ophthalmic Surg Lasers Imaging Retina. 2017;48(3):263–6.CrossRefPubMed
13.
go back to reference Pappuru RR, Peguda HK, Dave VP. Optical coherence tomographic angiography in type 1 idiopathic macular telangiectasia. Clin Exp Optom. 2018;101(1):143–4.CrossRefPubMed Pappuru RR, Peguda HK, Dave VP. Optical coherence tomographic angiography in type 1 idiopathic macular telangiectasia. Clin Exp Optom. 2018;101(1):143–4.CrossRefPubMed
14.
go back to reference Mao L, Weng SS, Gong YY, Yu SQ. Optical coherence tomography angiography of macular telangiectasia type 1: comparison with mild diabetic macular edema. Lasers Surg Med. 2017;49(3):225–32.CrossRefPubMed Mao L, Weng SS, Gong YY, Yu SQ. Optical coherence tomography angiography of macular telangiectasia type 1: comparison with mild diabetic macular edema. Lasers Surg Med. 2017;49(3):225–32.CrossRefPubMed
15.
go back to reference Chidambara L, Gadde SG, Yadav NK, Jayadev C, Bhanushali D, Appaji AM, et al. Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography. Br J Ophthalmol. 2016;100(11):1482–8.CrossRefPubMed Chidambara L, Gadde SG, Yadav NK, Jayadev C, Bhanushali D, Appaji AM, et al. Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography. Br J Ophthalmol. 2016;100(11):1482–8.CrossRefPubMed
16.
go back to reference Toto L, Di Antonio L, Mastropasqua R, Mattei PA, Carpineto P, Borrelli E, et al. Multimodal imaging of macular telangiectasia type 2: focus on vascular changes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):T268–76.CrossRef Toto L, Di Antonio L, Mastropasqua R, Mattei PA, Carpineto P, Borrelli E, et al. Multimodal imaging of macular telangiectasia type 2: focus on vascular changes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):T268–76.CrossRef
17.
go back to reference Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol. 2003;121(5):695–706.CrossRefPubMed Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol. 2003;121(5):695–706.CrossRefPubMed
18.
go back to reference Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral domain optical coherence tomography. The IN•OCT consensus. Ophthalmology. 2014;121(8):1572–8.CrossRefPubMed Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral domain optical coherence tomography. The IN•OCT consensus. Ophthalmology. 2014;121(8):1572–8.CrossRefPubMed
19.
go back to reference Wakazono T, Ooto S, Hangai M, Yoshimura N. Photoreceptor outer segment abnormalities and retinal sensitivity in acute zonal occult outer retinopathy. Retina. 2013;33(3):642–8.CrossRefPubMed Wakazono T, Ooto S, Hangai M, Yoshimura N. Photoreceptor outer segment abnormalities and retinal sensitivity in acute zonal occult outer retinopathy. Retina. 2013;33(3):642–8.CrossRefPubMed
20.
go back to reference Grewal DS, O'Sullivan ML, Kron M, Jaffe GJ. Association of disorganization of retinal inner layers with visual acuity in eyes with uveitic cystoid macular edema. Am J Ophthalmol. 2017;177:116–25.CrossRefPubMed Grewal DS, O'Sullivan ML, Kron M, Jaffe GJ. Association of disorganization of retinal inner layers with visual acuity in eyes with uveitic cystoid macular edema. Am J Ophthalmol. 2017;177:116–25.CrossRefPubMed
21.
go back to reference Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132(11):1309–16.CrossRefPubMed Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132(11):1309–16.CrossRefPubMed
22.
go back to reference Spaide RF. Volume-rendered optical coherence tomography of diabetic retinopathy pilot study. Am J Ophthalmol. 2015;160(6):1200–10.CrossRefPubMed Spaide RF. Volume-rendered optical coherence tomography of diabetic retinopathy pilot study. Am J Ophthalmol. 2015;160(6):1200–10.CrossRefPubMed
23.
go back to reference Abreu-Gonzalez R, Diaz-Rodriguez R, Rubio-Rodriguez G, Gil-Hernandez MA, Abreu-Reyes P. Macular vascular flow area and vascular density in healthy population using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(15):6713.CrossRefPubMed Abreu-Gonzalez R, Diaz-Rodriguez R, Rubio-Rodriguez G, Gil-Hernandez MA, Abreu-Reyes P. Macular vascular flow area and vascular density in healthy population using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(15):6713.CrossRefPubMed
24.
go back to reference Birol G, Wang S, Budzynski E, Wangsa-Wirawan ND, Linsenmeier RA. Oxygen distribution and consumption in the macaque retina. Am J Physiol Heart Circ Physiol. 2007;293(3):H1696–704.CrossRefPubMed Birol G, Wang S, Budzynski E, Wangsa-Wirawan ND, Linsenmeier RA. Oxygen distribution and consumption in the macaque retina. Am J Physiol Heart Circ Physiol. 2007;293(3):H1696–704.CrossRefPubMed
25.
go back to reference Sugiura Y, Okamoto F, Okamoto Y, Hiraoka T, Oshika T. Visual function in patients with idiopathic macular telangiectasia type 1. Acta Ophthalmol. 2016;94(7):e672–3.CrossRefPubMed Sugiura Y, Okamoto F, Okamoto Y, Hiraoka T, Oshika T. Visual function in patients with idiopathic macular telangiectasia type 1. Acta Ophthalmol. 2016;94(7):e672–3.CrossRefPubMed
Metadata
Title
Predictive multi-imaging biomarkers relevant for visual acuity in idiopathic macular telangiectasis type 1
Authors
Jingli Guo
WenYi Tang
Xiaofeng Ye
Haixiang Wu
Gezhi Xu
Wei Liu
Yongjin Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0737-y

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue