Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Cholangiocarcinoma | Research article

Novel biomarkers distinguishing pancreatic head Cancer from distal cholangiocarcinoma based on proteomic analysis

Authors: Tsutomu Takenami, Shimpei Maeda, Hideaki Karasawa, Takashi Suzuki, Toru Furukawa, Takanori Morikawa, Tatsuyuki Takadate, Hiroki Hayashi, Kei Nakagawa, Fuyuhiko Motoi, Takeshi Naitoh, Michiaki Unno

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

The differentiation between pancreatic head cancer (PHC) and distal cholangiocarcinoma (DCC) can be challenging because of their anatomical and histopathological similarity. This is an important problem, because the distinction has important implications for the treatment of these malignancies. However, there are no biomarkers for the differential diagnosis of PHC and DCC. The present study aimed to identify novel diagnostic immunohistochemical biomarkers to distinguish PHC from DCC.

Methods

Liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed to detect candidate proteins. Ten PHC and 8 DCC specimens were analyzed by LC-MS/MS. Selected proteins were evaluated, using immunohistochemical analysis, to determine whether they would be appropriate biomarkers. Finally, we generated biomarker panels to improve diagnostic accuracy. We applied these panels to clinically difficult cases (cases in which different diagnoses were made before and after operation).

Results

Consequently, 1820 proteins were detected using LC-MS/MS. Fifteen differentially expressed proteins were selected as candidates based on semi-quantitative comparison. We first performed immunohistochemical staining on samples from the small cohort group (12 PHCs and 12 DCCs) using 15 candidates. KRT17, ANXA10, TMEM109, PTMS, and ATP1B1 showed favorable performances and were tested in the next large cohort group (72 PHCs and 74 DCCs). Based on immunohistochemical analysis, KRT17 performed best for the diagnosis of PHC as a single marker; additionally, PTMS exhibited good performance for the diagnosis of DCCs. Moreover, we indicated the KRT17+/ANXA10+/PTMS- staining pattern as a biomarker panel for the correct diagnosis of PHC and KRT17−/ANXA10−/PTMS+ for the diagnosis of DCC. After immunohistochemical staining for examining samples from the clinically difficult cases, these panels showed satisfactory diagnostic performance with 85.7% (6/7) accuracy.

Conclusions

We conclude that 5 proteins and 2 biomarker panels are promising for distinguishing PHC from DCC, and patients with an equivocal diagnosis would benefit from the application of these biomarkers. Confirmatory studies are needed to generalize these findings to other populations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRef Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRef
2.
go back to reference Fernández Moro C, Fernandez-Woodbridge A, Alistair D'souza M, Zhang Q, Bozoky B, Kandaswamy SV, et al. Immunohistochemical typing of adenocarcinomas of the Pancreatobiliary system improves diagnosis and prognostic stratification. PLoS One. 2016;11:e0166067.CrossRef Fernández Moro C, Fernandez-Woodbridge A, Alistair D'souza M, Zhang Q, Bozoky B, Kandaswamy SV, et al. Immunohistochemical typing of adenocarcinomas of the Pancreatobiliary system improves diagnosis and prognostic stratification. PLoS One. 2016;11:e0166067.CrossRef
3.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.CrossRef
4.
go back to reference Randi G, Malvezzi M, Levi F, Ferlay J, Negri E, Franceschi S, et al. Epidemiology of biliary tract cancers: an update. Ann Oncol. 2009;20:146–59.CrossRef Randi G, Malvezzi M, Levi F, Ferlay J, Negri E, Franceschi S, et al. Epidemiology of biliary tract cancers: an update. Ann Oncol. 2009;20:146–59.CrossRef
5.
go back to reference Katanoda K, Matsuda T, Matsuda A, Shibata A, Nishino Y, Fujita M, et al. An updated report of the trends in cancer incidence and mortality in Japan. Jpn J Clin Oncol. 2013;43:492–507.CrossRef Katanoda K, Matsuda T, Matsuda A, Shibata A, Nishino Y, Fujita M, et al. An updated report of the trends in cancer incidence and mortality in Japan. Jpn J Clin Oncol. 2013;43:492–507.CrossRef
6.
go back to reference Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.CrossRef Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.CrossRef
7.
go back to reference Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRef Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRef
8.
go back to reference Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRef Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRef
9.
go back to reference Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–81.CrossRef Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–81.CrossRef
10.
go back to reference Marcano-Bonilla L, Mohamed EA, Mounajjed T, Roberts LR. Biliary tract cancers: epidemiology, molecular pathogenesis and genetic risk associations. Chin Clin Oncol. 2016;5:61.CrossRef Marcano-Bonilla L, Mohamed EA, Mounajjed T, Roberts LR. Biliary tract cancers: epidemiology, molecular pathogenesis and genetic risk associations. Chin Clin Oncol. 2016;5:61.CrossRef
12.
go back to reference Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol. 2010;2:419–27.CrossRef Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol. 2010;2:419–27.CrossRef
13.
go back to reference Blechacz B, Gores GJ. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology. 2008;48:308–21.CrossRef Blechacz B, Gores GJ. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology. 2008;48:308–21.CrossRef
14.
go back to reference Razumilava N, Gores GJ. Classification, diagnosis, and Management of Cholangiocarcinoma. Clin Gastroenterol Hepatol. 2013;11:13–e4.CrossRef Razumilava N, Gores GJ. Classification, diagnosis, and Management of Cholangiocarcinoma. Clin Gastroenterol Hepatol. 2013;11:13–e4.CrossRef
15.
go back to reference Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19:242–7.CrossRef Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19:242–7.CrossRef
16.
go back to reference Takadate T, Onogawa T, Fujii K, Motoi F, Mikami S, Fukuda T, et al. Nm23/nucleoside diphosphate kinase-a as a potent prognostic marker in invasive pancreatic ductal carcinoma identified by proteomic analysis of laser micro-dissected formalin-fixed paraffin-embedded tissue. Clin Proteomics. 2012;9:8.CrossRef Takadate T, Onogawa T, Fujii K, Motoi F, Mikami S, Fukuda T, et al. Nm23/nucleoside diphosphate kinase-a as a potent prognostic marker in invasive pancreatic ductal carcinoma identified by proteomic analysis of laser micro-dissected formalin-fixed paraffin-embedded tissue. Clin Proteomics. 2012;9:8.CrossRef
17.
go back to reference Takadate T, Onogawa T, Fukuda T, Motoi F, Suzuki T, Fujii K, et al. Novel prognostic protein markers of resectable pancreatic cancer identified by coupled shotgun and targeted proteomics using formalin-fixed paraffin-embedded tissues. Int J Cancer. 2013;132:1368–82.CrossRef Takadate T, Onogawa T, Fukuda T, Motoi F, Suzuki T, Fujii K, et al. Novel prognostic protein markers of resectable pancreatic cancer identified by coupled shotgun and targeted proteomics using formalin-fixed paraffin-embedded tissues. Int J Cancer. 2013;132:1368–82.CrossRef
18.
go back to reference Maeda S, Morikawa T, Takadate T, Suzuki T, Minowa T, Hanagata N, et al. Mass spectrometry-based proteomic analysis of formalin-fixed paraffin-embedded extrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2015;22:683–91.CrossRef Maeda S, Morikawa T, Takadate T, Suzuki T, Minowa T, Hanagata N, et al. Mass spectrometry-based proteomic analysis of formalin-fixed paraffin-embedded extrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2015;22:683–91.CrossRef
19.
go back to reference Hooper JE, Morgan TK, Grompe M, Sheppard BC, Troxell ML, Corless CL, et al. The novel monoclonal antibody HPC2 and N-cadherin distinguish pancreatic ductal adenocarcinoma from cholangiocarcinoma. Hum Pathol. 2012;43:1583–9.CrossRef Hooper JE, Morgan TK, Grompe M, Sheppard BC, Troxell ML, Corless CL, et al. The novel monoclonal antibody HPC2 and N-cadherin distinguish pancreatic ductal adenocarcinoma from cholangiocarcinoma. Hum Pathol. 2012;43:1583–9.CrossRef
20.
go back to reference Lok T, Chen L, Lin F, Wang HL. Immunohistochemical distinction between intrahepatic cholangiocarcinoma and pancreatic ductal adenocarcinoma. Hum Pathol. 2014;45:394–400.CrossRef Lok T, Chen L, Lin F, Wang HL. Immunohistochemical distinction between intrahepatic cholangiocarcinoma and pancreatic ductal adenocarcinoma. Hum Pathol. 2014;45:394–400.CrossRef
21.
go back to reference Ney JT, Zhou H, Sipos B, Buttner R, Chen X, Kloppel G, et al. Podocalyxin-like protein 1 expression is useful to differentiate pancreatic ductal adenocarcinomas from adenocarcinomas of the biliary and gastrointestinal tracts. Hum Pathol. 2007;38:359–64.CrossRef Ney JT, Zhou H, Sipos B, Buttner R, Chen X, Kloppel G, et al. Podocalyxin-like protein 1 expression is useful to differentiate pancreatic ductal adenocarcinomas from adenocarcinomas of the biliary and gastrointestinal tracts. Hum Pathol. 2007;38:359–64.CrossRef
22.
go back to reference Sobin LHGM, Wittekind C. TNM classification of malignant Tumours. 7th ed. Oxford: Wiley-Blachwell; 2009. Sobin LHGM, Wittekind C. TNM classification of malignant Tumours. 7th ed. Oxford: Wiley-Blachwell; 2009.
23.
go back to reference Kawamura T, Nomura M, Tojo H, Fujii K, Hamasaki H, Mikami S, et al. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (1) stage-related protein candidates upon non-metastatic lung adenocarcinoma. J Proteome. 2010;73:1089–99.CrossRef Kawamura T, Nomura M, Tojo H, Fujii K, Hamasaki H, Mikami S, et al. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (1) stage-related protein candidates upon non-metastatic lung adenocarcinoma. J Proteome. 2010;73:1089–99.CrossRef
24.
go back to reference Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4:1487–502.CrossRef Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4:1487–502.CrossRef
25.
go back to reference Qian W-J, Jacobs JM, Liu T, Camp DG, Smith RD. Advances and challenges in liquid chromatography-mass spectrometry based proteomic profiling for clinical applications. Mol Cell Proteomics. 2006;5:1727–44.CrossRef Qian W-J, Jacobs JM, Liu T, Camp DG, Smith RD. Advances and challenges in liquid chromatography-mass spectrometry based proteomic profiling for clinical applications. Mol Cell Proteomics. 2006;5:1727–44.CrossRef
26.
go back to reference Troyanovsky S, Leube R, Franke W. Characterization of the human gene encoding cytokeratin 17 and its expression pattern. Eur J Cell Biol. 1992;59:127–37.PubMed Troyanovsky S, Leube R, Franke W. Characterization of the human gene encoding cytokeratin 17 and its expression pattern. Eur J Cell Biol. 1992;59:127–37.PubMed
27.
go back to reference Troyanovsky S, Guelstein V, Tchipysheva T, Krutovskikh V, Bannikov G. Patterns of expression of keratin 17 in human epithelia: dependency on cell position. J Cell Sci. 1989;93:419–26.PubMed Troyanovsky S, Guelstein V, Tchipysheva T, Krutovskikh V, Bannikov G. Patterns of expression of keratin 17 in human epithelia: dependency on cell position. J Cell Sci. 1989;93:419–26.PubMed
28.
go back to reference Chu PG, Schwarz RE, Lau SK, Yen Y, Weiss LM. Immunohistochemical staining in the diagnosis of pancreatobiliary and ampulla of Vater adenocarcinoma: application of CDX2, CK17, MUC1, and MUC2. Am J Surg Pathol. 2005;29:359–67.CrossRef Chu PG, Schwarz RE, Lau SK, Yen Y, Weiss LM. Immunohistochemical staining in the diagnosis of pancreatobiliary and ampulla of Vater adenocarcinoma: application of CDX2, CK17, MUC1, and MUC2. Am J Surg Pathol. 2005;29:359–67.CrossRef
29.
go back to reference Miettinen M, Nobel MP, Tuma BT, Kovatich AJ. Keratin 17: Immunohistochemical mapping of its distribution in human epithelial tumors and its potential applications. Appl Immunohistochem. 1997;5:152–9.CrossRef Miettinen M, Nobel MP, Tuma BT, Kovatich AJ. Keratin 17: Immunohistochemical mapping of its distribution in human epithelial tumors and its potential applications. Appl Immunohistochem. 1997;5:152–9.CrossRef
30.
go back to reference Goldstein NS, Bassi D. Cytokeratins 7, 17, and 20 reactivity in pancreatic and ampulla of Vater AdenocarcinomasPercentage of positivity and distribution is affected by the cut-point threshold. Am J Clin Pathol. 2001;115:695–702.CrossRef Goldstein NS, Bassi D. Cytokeratins 7, 17, and 20 reactivity in pancreatic and ampulla of Vater AdenocarcinomasPercentage of positivity and distribution is affected by the cut-point threshold. Am J Clin Pathol. 2001;115:695–702.CrossRef
31.
go back to reference Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS, et al. Frequent mutation of Isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17:72–9.CrossRef Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS, et al. Frequent mutation of Isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17:72–9.CrossRef
32.
go back to reference Marks EI, Yee NS. Molecular genetics and targeted therapeutics in biliary tract carcinoma. World J Gastroenterol. 2016;22:1335–47.CrossRef Marks EI, Yee NS. Molecular genetics and targeted therapeutics in biliary tract carcinoma. World J Gastroenterol. 2016;22:1335–47.CrossRef
33.
go back to reference Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82:331–71.CrossRef Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82:331–71.CrossRef
34.
go back to reference Masaki T, Tokuda M, Ohnishi M, Watanabe S, Fujimura T, Miyamoto K, et al. Enhanced expression of the protein kinase substrate annexin in human hepatocellular carcinoma. Hepatology. 1996;24:72–81.PubMed Masaki T, Tokuda M, Ohnishi M, Watanabe S, Fujimura T, Miyamoto K, et al. Enhanced expression of the protein kinase substrate annexin in human hepatocellular carcinoma. Hepatology. 1996;24:72–81.PubMed
35.
go back to reference Mussunoor S, Murray GI. The role of annexins in tumour development and progression. J Pathol. 2008;216:131–40.CrossRef Mussunoor S, Murray GI. The role of annexins in tumour development and progression. J Pathol. 2008;216:131–40.CrossRef
36.
go back to reference Kim J, Kim MA, Jee CD, Jung EJ, Kim WH. Reduced expression and homozygous deletion of annexin A10 in gastric carcinoma. Int J Cancer. 2009;125:1842–50.CrossRef Kim J, Kim MA, Jee CD, Jung EJ, Kim WH. Reduced expression and homozygous deletion of annexin A10 in gastric carcinoma. Int J Cancer. 2009;125:1842–50.CrossRef
37.
go back to reference Lu SH, Chen YL, Shun CT, Lai JN, Peng SY, Lai PL, et al. Expression and prognostic significance of gastric-specific annexin A10 in diffuse- and intestinal-type gastric carcinoma. J Gastroenterol Hepatol. 2011;26:90–7.CrossRef Lu SH, Chen YL, Shun CT, Lai JN, Peng SY, Lai PL, et al. Expression and prognostic significance of gastric-specific annexin A10 in diffuse- and intestinal-type gastric carcinoma. J Gastroenterol Hepatol. 2011;26:90–7.CrossRef
38.
go back to reference Lu SH, Yuan RH, Chen YL, Hsu HC, Jeng YM. Annexin A10 is an immunohistochemical marker for adenocarcinoma of the upper gastrointestinal tract and pancreatobiliary system. Histopathology. 2013;63:640–8.PubMed Lu SH, Yuan RH, Chen YL, Hsu HC, Jeng YM. Annexin A10 is an immunohistochemical marker for adenocarcinoma of the upper gastrointestinal tract and pancreatobiliary system. Histopathology. 2013;63:640–8.PubMed
39.
go back to reference Padden J, Ahrens M, Kalsch J, Bertram S, Megger DA, Bracht T, et al. Immunohistochemical markers distinguishing Cholangiocellular carcinoma (CCC) from pancreatic ductal adenocarcinoma (PDAC) discovered by proteomic analysis of microdissected cells. Mol Cell Proteomics. 2016;15:1072–82.CrossRef Padden J, Ahrens M, Kalsch J, Bertram S, Megger DA, Bracht T, et al. Immunohistochemical markers distinguishing Cholangiocellular carcinoma (CCC) from pancreatic ductal adenocarcinoma (PDAC) discovered by proteomic analysis of microdissected cells. Mol Cell Proteomics. 2016;15:1072–82.CrossRef
40.
go back to reference Kalsch J, Padden J, Bertram S, Pott LL, Reis H, Westerwick D, et al. Annexin A10 optimally differentiates between intrahepatic cholangiocarcinoma and hepatic metastases of pancreatic ductal adenocarcinoma: a comparative study of immunohistochemical markers and panels. Virchows Arch. 2017;470:537–43.CrossRef Kalsch J, Padden J, Bertram S, Pott LL, Reis H, Westerwick D, et al. Annexin A10 optimally differentiates between intrahepatic cholangiocarcinoma and hepatic metastases of pancreatic ductal adenocarcinoma: a comparative study of immunohistochemical markers and panels. Virchows Arch. 2017;470:537–43.CrossRef
41.
go back to reference Okamoto K, Isohashi F. Macromolecular translocation inhibitor II (Zn(2+)-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J Biol Chem. 2005;280:36986–93.CrossRef Okamoto K, Isohashi F. Macromolecular translocation inhibitor II (Zn(2+)-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J Biol Chem. 2005;280:36986–93.CrossRef
42.
go back to reference Okamoto K, Hirata-Tsuchiya S, Kitamura C, Omoteyama K, Sato T, Arito M, et al. A small nuclear acidic protein (MTI-II, Zn2+ binding protein, Parathymosin) that inhibits transcriptional activity of NF-kappaB and its potential application to Antiinflammatory drugs. Endocrinology. 2016;157:4973–86.CrossRef Okamoto K, Hirata-Tsuchiya S, Kitamura C, Omoteyama K, Sato T, Arito M, et al. A small nuclear acidic protein (MTI-II, Zn2+ binding protein, Parathymosin) that inhibits transcriptional activity of NF-kappaB and its potential application to Antiinflammatory drugs. Endocrinology. 2016;157:4973–86.CrossRef
43.
go back to reference Cai XZ, Zeng WQ, Xiang Y, Liu Y, Zhang HM, Li H, et al. iTRAQ-based quantitative proteomic analysis of nasopharyngeal carcinoma. J Cell Biochem. 2015;116:1431–41.CrossRef Cai XZ, Zeng WQ, Xiang Y, Liu Y, Zhang HM, Li H, et al. iTRAQ-based quantitative proteomic analysis of nasopharyngeal carcinoma. J Cell Biochem. 2015;116:1431–41.CrossRef
44.
go back to reference Apell HJ, Karlish SJ. Functional properties of Na,K-ATPase, and their structural implications, as detected with biophysical techniques. J Membr Biol. 2001;180:1–9.CrossRef Apell HJ, Karlish SJ. Functional properties of Na,K-ATPase, and their structural implications, as detected with biophysical techniques. J Membr Biol. 2001;180:1–9.CrossRef
45.
go back to reference Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, et al. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–9.CrossRef Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, et al. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–9.CrossRef
46.
go back to reference Shi J-l FL, Ang Q, Wang G-j, Zhu J, Wang W. Overexpression of ATP1B1 predicts an adverse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget. 2016;7:2585–95.PubMed Shi J-l FL, Ang Q, Wang G-j, Zhu J, Wang W. Overexpression of ATP1B1 predicts an adverse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget. 2016;7:2585–95.PubMed
47.
go back to reference Miura F, Takada T, Amano H, Yoshida M, Furui S, Takeshita K. Diagnosis of pancreatic cancer. HPB (Oxford). 2006;8:337–42.CrossRef Miura F, Takada T, Amano H, Yoshida M, Furui S, Takeshita K. Diagnosis of pancreatic cancer. HPB (Oxford). 2006;8:337–42.CrossRef
Metadata
Title
Novel biomarkers distinguishing pancreatic head Cancer from distal cholangiocarcinoma based on proteomic analysis
Authors
Tsutomu Takenami
Shimpei Maeda
Hideaki Karasawa
Takashi Suzuki
Toru Furukawa
Takanori Morikawa
Tatsuyuki Takadate
Hiroki Hayashi
Kei Nakagawa
Fuyuhiko Motoi
Takeshi Naitoh
Michiaki Unno
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5548-x

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine