Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Protein kinase C inhibitor Gö6976 but not Gö6983 induces the reversion of E- to N-cadherin switch and metastatic phenotype in melanoma: identification of the role of protein kinase D1

Authors: Messaouda Merzoug-Larabi, Caroline Spasojevic, Marianne Eymard, Caroline Hugonin, Christian Auclair, Manale Karam

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Melanoma is a highly metastatic type of cancer that is resistant to all standard anticancer therapies and thus has a poor prognosis. Therefore, metastatic melanoma represents a significant clinical problem and requires novel and effective targeted therapies. The protein kinase C (PKC) family comprises multiple isoforms of serine/threonine kinases that possess distinct roles in cancer development and progression. In this study, we determined whether inhibition of PKC could revert a major process required for melanoma progression and metastasis; i.e. the E- to N-cadherin switch.

Methods

The cadherin switch was analyzed in different patient-derived primary tumors and their respective metastatic melanoma cells to determine the appropriate cellular model (aggressive E-cadherin-negative/N-cadherin-positive metastasis-derived melanoma cells). Next, PKC inhibition in two selected metastatic melanoma cell lines, was performed by using either pharmacological inhibitors (Gö6976 and Gö6983) or stable lentiviral shRNA transduction. The expression of E-cadherin and N-cadherin was determined by western blot. The consequences of cadherin switch reversion were analyzed: cell morphology, intercellular interactions, and β-catenin subcellular localization were analyzed by immunofluorescence labeling and confocal microscopy; cyclin D1 expression was analyzed by western blot; cell metastatic potential was determined by anchorage-independent growth assay using methylcellulose as semi-solid medium and cell migration potential by wound healing and transwell assays.

Results

Gö6976 but not Gö6983 reversed the E- to N-cadherin switch and as a consequence induced intercellular interactions, profound morphological changes from elongated mesenchymal-like to cuboidal epithelial-like shape, β-catenin translocation from the nucleus to the plasma membrane inhibiting its oncogenic function, and reverting the metastatic potential of the aggressive melanoma cells. Comparison of the target spectrum of these inhibitors indicated that these observations were not the consequence of the inhibition of conventional PKCs (cPKCs), but allowed the identification of a novel serine/threonine kinase, i.e. protein kinase Cμ, also known as protein kinase D1 (PKD1), whose specific inhibition allows the reversion of the metastatic phenotype in aggressive melanoma.

Conclusion

In conclusion, our study suggests, for the first time, that while cPKCs don’t embody a pertinent therapeutic target, inhibition of PKD1 represents a novel attractive approach for the treatment of metastatic melanoma.
Appendix
Available only for authorised users
Literature
7.
go back to reference Valyi-Nagy IT, Hirka G, Jensen PJ, Shih IM, Juhasz I, Herlyn M. Undifferentiated keratinocytes control growth, morphology, and antigen expression of normal melanocytes through cell-cell contact. Lab Invest. 1993;69(2):152–9.PubMed Valyi-Nagy IT, Hirka G, Jensen PJ, Shih IM, Juhasz I, Herlyn M. Undifferentiated keratinocytes control growth, morphology, and antigen expression of normal melanocytes through cell-cell contact. Lab Invest. 1993;69(2):152–9.PubMed
8.
go back to reference Danen EH, de Vries TJ, Morandini R, Ghanem GG, Ruiter DJ, van Muijen GN. E-cadherin expression in human melanoma. Melanoma Res. 1996;6(2):127–31.PubMedCrossRef Danen EH, de Vries TJ, Morandini R, Ghanem GG, Ruiter DJ, van Muijen GN. E-cadherin expression in human melanoma. Melanoma Res. 1996;6(2):127–31.PubMedCrossRef
9.
go back to reference Hsu MY, Wheelock MJ, Johnson KR, Herlyn M. Shifts in cadherin profiles between human normal melanocytes and melanomas. J Investig Dermatol Symp Proc. 1996;1(2):188–94.PubMed Hsu MY, Wheelock MJ, Johnson KR, Herlyn M. Shifts in cadherin profiles between human normal melanocytes and melanomas. J Investig Dermatol Symp Proc. 1996;1(2):188–94.PubMed
10.
go back to reference Haass NK, Smalley KS, Herlyn M. The role of altered cell-cell communication in melanoma progression. J Mol Histol. 2004;35(3):309–18.PubMedCrossRef Haass NK, Smalley KS, Herlyn M. The role of altered cell-cell communication in melanoma progression. J Mol Histol. 2004;35(3):309–18.PubMedCrossRef
12.
go back to reference Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 1993;9(9):317–21.PubMedCrossRef Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 1993;9(9):317–21.PubMedCrossRef
14.
go back to reference Hazan RB, Qiao R, Keren R, Badano I, Suyama K. Cadherin switch in tumor progression. Ann N Y Acad Sci. 2004;1014:155–63.PubMedCrossRef Hazan RB, Qiao R, Keren R, Badano I, Suyama K. Cadherin switch in tumor progression. Ann N Y Acad Sci. 2004;1014:155–63.PubMedCrossRef
15.
go back to reference Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001;61(9):3819–25.PubMed Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001;61(9):3819–25.PubMed
19.
go back to reference Ciolczyk-Wierzbicka D, Gil D, Laidler P. The inhibition of cell proliferation using silencing of N-cadherin gene by siRNA process in human melanoma cell lines. Curr Med Chem. 2012;19(1):145–51.PubMedCrossRef Ciolczyk-Wierzbicka D, Gil D, Laidler P. The inhibition of cell proliferation using silencing of N-cadherin gene by siRNA process in human melanoma cell lines. Curr Med Chem. 2012;19(1):145–51.PubMedCrossRef
20.
go back to reference Newton AC. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995;270(48):28495–8.PubMedCrossRef Newton AC. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995;270(48):28495–8.PubMedCrossRef
23.
go back to reference Johannes FJ, Prestle J, Eis S, Oberhagemann P, Pfizenmaier K. PKCu is a novel, atypical member of the protein kinase C family. J Biol Chem. 1994;269(8):6140–8.PubMed Johannes FJ, Prestle J, Eis S, Oberhagemann P, Pfizenmaier K. PKCu is a novel, atypical member of the protein kinase C family. J Biol Chem. 1994;269(8):6140–8.PubMed
24.
go back to reference Valverde AM, Sinnett-Smith J, Van Lint J, Rozengurt E. Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci U S A. 1994;91(18):8572–6.PubMedPubMedCentralCrossRef Valverde AM, Sinnett-Smith J, Van Lint J, Rozengurt E. Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci U S A. 1994;91(18):8572–6.PubMedPubMedCentralCrossRef
26.
go back to reference Gschwendt M, Dieterich S, Rennecke J, Kittstein W, Mueller HJ, Johannes FJ. Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett. 1996;392(2):77–80.PubMedCrossRef Gschwendt M, Dieterich S, Rennecke J, Kittstein W, Mueller HJ, Johannes FJ. Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett. 1996;392(2):77–80.PubMedCrossRef
27.
go back to reference Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem. 1993;268(13):9194–7.PubMed Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem. 1993;268(13):9194–7.PubMed
28.
29.
go back to reference Koivunen J, Aaltonen V, Koskela S, Lehenkari P, Laato M, Peltonen J. Protein kinase C alpha/beta inhibitor Go6976 promotes formation of cell junctions and inhibits invasion of urinary bladder carcinoma cells. Cancer Res. 2004;64(16):5693–701. doi:10.1158/0008-5472.CAN-03-3511.PubMedCrossRef Koivunen J, Aaltonen V, Koskela S, Lehenkari P, Laato M, Peltonen J. Protein kinase C alpha/beta inhibitor Go6976 promotes formation of cell junctions and inhibits invasion of urinary bladder carcinoma cells. Cancer Res. 2004;64(16):5693–701. doi:10.​1158/​0008-5472.​CAN-03-3511.PubMedCrossRef
30.
go back to reference Gassara A, Messai Y, Gaudin C, Abouzahr S, Jalil A, Diarra-Mehrpour M, et al. The decreased susceptibility of metastatic melanoma cells to killing involves an alteration of CTL reactivity. Int J Oncol. 2006;29(1):155–61.PubMed Gassara A, Messai Y, Gaudin C, Abouzahr S, Jalil A, Diarra-Mehrpour M, et al. The decreased susceptibility of metastatic melanoma cells to killing involves an alteration of CTL reactivity. Int J Oncol. 2006;29(1):155–61.PubMed
33.
go back to reference Orsulic S, Huber O, Aberle H, Arnold S, Kemler R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci. 1999;112(Pt 8):1237–45.PubMed Orsulic S, Huber O, Aberle H, Arnold S, Kemler R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci. 1999;112(Pt 8):1237–45.PubMed
37.
go back to reference Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213(2):374–83. doi:10.1002/jcp.21223.PubMedCrossRef Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213(2):374–83. doi:10.​1002/​jcp.​21223.PubMedCrossRef
40.
42.
44.
go back to reference Islam S, Carey TE, Wolf GT, Wheelock MJ, Johnson KR. Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion. J Cell Biol. 1996;135(6 Pt 1):1643–54.PubMedCrossRef Islam S, Carey TE, Wolf GT, Wheelock MJ, Johnson KR. Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion. J Cell Biol. 1996;135(6 Pt 1):1643–54.PubMedCrossRef
46.
go back to reference Hinck L, Nathke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol. 1994;125(6):1327–40.PubMedCrossRef Hinck L, Nathke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol. 1994;125(6):1327–40.PubMedCrossRef
48.
go back to reference Ozawa M, Kemler R. Molecular organization of the uvomorulin-catenin complex. J Cell Biol. 1992;116(4):989–96.PubMedCrossRef Ozawa M, Kemler R. Molecular organization of the uvomorulin-catenin complex. J Cell Biol. 1992;116(4):989–96.PubMedCrossRef
49.
50.
go back to reference Lemonnier J, Hay E, Delannoy P, Lomri A, Modrowski D, Caverzasio J, et al. Role of N-cadherin and protein kinase C in osteoblast gene activation induced by the S252W fibroblast growth factor receptor 2 mutation in Apert craniosynostosis. J Bone Miner Res. 2001;16(5):832–45. doi:10.1359/jbmr.2001.16.5.832.PubMedCrossRef Lemonnier J, Hay E, Delannoy P, Lomri A, Modrowski D, Caverzasio J, et al. Role of N-cadherin and protein kinase C in osteoblast gene activation induced by the S252W fibroblast growth factor receptor 2 mutation in Apert craniosynostosis. J Bone Miner Res. 2001;16(5):832–45. doi:10.​1359/​jbmr.​2001.​16.​5.​832.PubMedCrossRef
51.
go back to reference Tang R, Yang C, Tao JL, You YK, An N, Li SM, et al. Epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells induced by urinary proteins requires the activation of PKC-alpha and betaI isozymes. Cell Biol Int. 2011;35(9):953–9. doi:10.1042/CBI20100668.PubMedCrossRef Tang R, Yang C, Tao JL, You YK, An N, Li SM, et al. Epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells induced by urinary proteins requires the activation of PKC-alpha and betaI isozymes. Cell Biol Int. 2011;35(9):953–9. doi:10.​1042/​CBI20100668.PubMedCrossRef
54.
go back to reference Rozengurt E, Sinnett-Smith J, Van Lint J, Valverde AM. Protein kinase D (PKD): a novel target for diacylglycerol and phorbol esters. Mutat Res. 1995;333(1–2):153–60.PubMedCrossRef Rozengurt E, Sinnett-Smith J, Van Lint J, Valverde AM. Protein kinase D (PKD): a novel target for diacylglycerol and phorbol esters. Mutat Res. 1995;333(1–2):153–60.PubMedCrossRef
56.
go back to reference Kempkes C, Rattenholl A, Buddenkotte J, Strozyk E, Eberle J, Hausser A, et al. Proteinase-activated receptors 1 and 2 regulate invasive behavior of human melanoma cells via activation of protein kinase D1. J Invest Dermatol. 2012;132(2):375–84. doi:10.1038/jid.2011.314.PubMedCrossRef Kempkes C, Rattenholl A, Buddenkotte J, Strozyk E, Eberle J, Hausser A, et al. Proteinase-activated receptors 1 and 2 regulate invasive behavior of human melanoma cells via activation of protein kinase D1. J Invest Dermatol. 2012;132(2):375–84. doi:10.​1038/​jid.​2011.​314.PubMedCrossRef
58.
go back to reference Johannessen M, Delghandi MP, Rykx A, Dragset M, Vandenheede JR, Van Lint J, et al. Protein kinase D induces transcription through direct phosphorylation of the cAMP-response element-binding protein. J Biol Chem. 2007;282(20):14777–87. doi:10.1074/jbc.M610669200.PubMedCrossRef Johannessen M, Delghandi MP, Rykx A, Dragset M, Vandenheede JR, Van Lint J, et al. Protein kinase D induces transcription through direct phosphorylation of the cAMP-response element-binding protein. J Biol Chem. 2007;282(20):14777–87. doi:10.​1074/​jbc.​M610669200.PubMedCrossRef
59.
60.
go back to reference Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9. doi:10.1038/35000034.PubMedCrossRef Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9. doi:10.​1038/​35000034.PubMedCrossRef
61.
go back to reference Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK. Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem. 2001;276(27):24661–6. doi:10.1074/jbc.M011224200.PubMedCrossRef Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK. Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem. 2001;276(27):24661–6. doi:10.​1074/​jbc.​M011224200.PubMedCrossRef
62.
go back to reference Yuan J, Lugea A, Zheng L, Gukovsky I, Edderkaoui M, Rozengurt E, et al. Protein kinase D1 mediates NF-kappaB activation induced by cholecystokinin and cholinergic signaling in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol. 2008;295(6):G1190–201. doi:10.1152/ajpgi.90452.2008.PubMedPubMedCentralCrossRef Yuan J, Lugea A, Zheng L, Gukovsky I, Edderkaoui M, Rozengurt E, et al. Protein kinase D1 mediates NF-kappaB activation induced by cholecystokinin and cholinergic signaling in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol. 2008;295(6):G1190–201. doi:10.​1152/​ajpgi.​90452.​2008.PubMedPubMedCentralCrossRef
63.
64.
66.
go back to reference Zhang Z, Zhu S, Yang Y, Ma X, Guo S. Matrix metalloproteinase-12 expression is increased in cutaneous melanoma and associated with tumor aggressiveness. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015. doi:10.1007/s13277-015-3622-9 Zhang Z, Zhu S, Yang Y, Ma X, Guo S. Matrix metalloproteinase-12 expression is increased in cutaneous melanoma and associated with tumor aggressiveness. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015. doi:10.​1007/​s13277-015-3622-9
67.
go back to reference Zhao X, Sun B, Li Y, Liu Y, Zhang D, Wang X, et al. Dual effects of collagenase-3 on melanoma: metastasis promotion and disruption of vasculogenic mimicry. Oncotarget. 2015;6(11):8890–9.PubMedPubMedCentralCrossRef Zhao X, Sun B, Li Y, Liu Y, Zhang D, Wang X, et al. Dual effects of collagenase-3 on melanoma: metastasis promotion and disruption of vasculogenic mimicry. Oncotarget. 2015;6(11):8890–9.PubMedPubMedCentralCrossRef
70.
go back to reference Roy S, Chakraborti T, Chowdhury A, Chakraborti S. Role of PKC-alpha in NF-kappaB-MT1-MMP-mediated activation of proMMP-2 by TNF-alpha in pulmonary artery smooth muscle cells. J Biochem. 2013;153(3):289–302. doi:10.1093/jb/mvs150.PubMedCrossRef Roy S, Chakraborti T, Chowdhury A, Chakraborti S. Role of PKC-alpha in NF-kappaB-MT1-MMP-mediated activation of proMMP-2 by TNF-alpha in pulmonary artery smooth muscle cells. J Biochem. 2013;153(3):289–302. doi:10.​1093/​jb/​mvs150.PubMedCrossRef
71.
go back to reference Shin Y, Yoon SH, Choe EY, Cho SH, Woo CH, Rho JY, et al. PMA-induced up-regulation of MMP-9 is regulated by a PKCalpha-NF-kappaB cascade in human lung epithelial cells. Exp Mol Med. 2007;39(1):97–105. doi:10.1038/emm.2007.11.PubMedCrossRef Shin Y, Yoon SH, Choe EY, Cho SH, Woo CH, Rho JY, et al. PMA-induced up-regulation of MMP-9 is regulated by a PKCalpha-NF-kappaB cascade in human lung epithelial cells. Exp Mol Med. 2007;39(1):97–105. doi:10.​1038/​emm.​2007.​11.PubMedCrossRef
72.
go back to reference Karam M, Bieche I, Legay C, Vacher S, Auclair C, Ricort JM. Protein kinase D1 regulates ERalpha-positive breast cancer cell growth response to 17beta-estradiol and contributes to poor prognosis in patients. J Cell Mol Med. 2014;18(12):2536–52. doi:10.1111/jcmm.12322.PubMedPubMedCentralCrossRef Karam M, Bieche I, Legay C, Vacher S, Auclair C, Ricort JM. Protein kinase D1 regulates ERalpha-positive breast cancer cell growth response to 17beta-estradiol and contributes to poor prognosis in patients. J Cell Mol Med. 2014;18(12):2536–52. doi:10.​1111/​jcmm.​12322.PubMedPubMedCentralCrossRef
73.
75.
Metadata
Title
Protein kinase C inhibitor Gö6976 but not Gö6983 induces the reversion of E- to N-cadherin switch and metastatic phenotype in melanoma: identification of the role of protein kinase D1
Authors
Messaouda Merzoug-Larabi
Caroline Spasojevic
Marianne Eymard
Caroline Hugonin
Christian Auclair
Manale Karam
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-3007-5

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine