Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Predominance of girls with cancer in families with multiple childhood cancer cases

Authors: Karl-Johan Stjernfelt, Kristoffer von Stedingk, Thomas Wiebe, Lars Hjorth, Håkan Olsson, Ingrid Øra

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Recent studies indicate that one of four childhood cancers can be attributed to hereditary genetic abnormalities.

Methods

The Lund Childhood Cancer Genetic study includes newly diagnosed childhood cancer patients as well as childhood cancer survivors visiting the Department of Pediatrics or the Late Effect Clinic at Skåne University Hospital, Lund, Sweden. Questionnaires regarding family history of cancer and blood samples were provided. Reported data were validated and extended by use of the Swedish Population- and Cancer Registries. Demographics in families with one case of childhood cancer (FAM1) were investigated and compared to families with multiple cases of childhood cancer (FAM > 1) as well as to childhood cancer in the general population.

Results

Forty-one out of 528 families (7.8%) had more than one case of childhood cancer. In 23 families the affected children were relatives up to a 3rd degree (4.4%). In FAM > 1, 69.2% of the children with leukemia and 60% of those with tumors in the central nervous system (CNS) had a childhood relative with matching diagnosis, both significantly higher than expected. Significantly more female than male patients were observed in FAM > 1 compared to FAM1. This female predominance was most striking in childhood leukemia (77% female) and also, yet to a lesser extent, in CNS tumors (68% female).

Conclusions

We conclude that the high proportion of children with leukemia or CNS tumors in FAM > 1 having a childhood relative with the same diagnosis suggests a hereditary background. Moreover, we report a female predominance in childhood leukemia and childhood CNS tumors in FAM > 1, which may indicate a hereditary gender-specific risk factor in these families.
Literature
1.
go back to reference Friedman DL, Kadan-Lottick NS, Whitton J, Mertens AC, Yasui Y, Liu Y, Meadows AT, Robison LL, Strong LC. Increased risk of cancer among siblings of long-term childhood cancer survivors: a report from the childhood cancer survivor study. Cancer Epidemiol Biomark Prev. 2005;14(8):1922–7.CrossRef Friedman DL, Kadan-Lottick NS, Whitton J, Mertens AC, Yasui Y, Liu Y, Meadows AT, Robison LL, Strong LC. Increased risk of cancer among siblings of long-term childhood cancer survivors: a report from the childhood cancer survivor study. Cancer Epidemiol Biomark Prev. 2005;14(8):1922–7.CrossRef
2.
go back to reference Magnusson S, Wiebe T, Kristoffersson U, Jernstrom H, Olsson H. Increased incidence of childhood, prostate and breast cancers in relatives of childhood cancer patients. Familial Cancer. 2012;11(1):145–55.CrossRefPubMed Magnusson S, Wiebe T, Kristoffersson U, Jernstrom H, Olsson H. Increased incidence of childhood, prostate and breast cancers in relatives of childhood cancer patients. Familial Cancer. 2012;11(1):145–55.CrossRefPubMed
3.
go back to reference Curtin K, Smith KR, Fraser A, Pimentel R, Kohlmann W, Schiffman JD. Familial risk of childhood cancer and tumors in the li-Fraumeni spectrum in the Utah population database: implications for genetic evaluation in pediatric practice. International journal of cancer Journal international du cancer. 2013;133(10):2444–53.CrossRefPubMedPubMedCentral Curtin K, Smith KR, Fraser A, Pimentel R, Kohlmann W, Schiffman JD. Familial risk of childhood cancer and tumors in the li-Fraumeni spectrum in the Utah population database: implications for genetic evaluation in pediatric practice. International journal of cancer Journal international du cancer. 2013;133(10):2444–53.CrossRefPubMedPubMedCentral
4.
go back to reference Neale RE, Stiller CA, Bunch KJ, Milne E, Mineau GP, Murphy MF. Familial aggregation of childhood and adult cancer in the Utah genealogy. International journal of cancer Journal international du cancer. 2013;133(12):2953–60.PubMed Neale RE, Stiller CA, Bunch KJ, Milne E, Mineau GP, Murphy MF. Familial aggregation of childhood and adult cancer in the Utah genealogy. International journal of cancer Journal international du cancer. 2013;133(12):2953–60.PubMed
5.
go back to reference Pang D, McNally R, Kelsey A, Birch JM. Cancer incidence and mortality among the parents of a population-based series of 2604 children with cancer. Cancer Epidemiol Biomark Prev. 2003;12(6):538–44. Pang D, McNally R, Kelsey A, Birch JM. Cancer incidence and mortality among the parents of a population-based series of 2604 children with cancer. Cancer Epidemiol Biomark Prev. 2003;12(6):538–44.
6.
go back to reference Winther JF, Sankila R, Boice JD, Tulinius H, Bautz A, Barlow L, Glattre E, Langmark F, Moller TR, Mulvihill JJ, et al. Cancer in siblings of children with cancer in the Nordic countries: a population-based cohort study. Lancet. 2001;358(9283):711–7.CrossRefPubMed Winther JF, Sankila R, Boice JD, Tulinius H, Bautz A, Barlow L, Glattre E, Langmark F, Moller TR, Mulvihill JJ, et al. Cancer in siblings of children with cancer in the Nordic countries: a population-based cohort study. Lancet. 2001;358(9283):711–7.CrossRefPubMed
7.
go back to reference Brunetti D, Tamaro P, Cavallieri F, Stanta G. Cancer risk in first-degree relatives of children with malignant tumours (province of Trieste, Italy). International journal of cancer Journal international du cancer. 1997;73(6):822–7.CrossRefPubMed Brunetti D, Tamaro P, Cavallieri F, Stanta G. Cancer risk in first-degree relatives of children with malignant tumours (province of Trieste, Italy). International journal of cancer Journal international du cancer. 1997;73(6):822–7.CrossRefPubMed
8.
go back to reference Burke E, Li FP, Janov AJ, Batter S, Grier H, Goorin A. Cancer in relatives of survivors of childhood sarcoma. Cancer. 1991;67(5):1467–9.CrossRefPubMed Burke E, Li FP, Janov AJ, Batter S, Grier H, Goorin A. Cancer in relatives of survivors of childhood sarcoma. Cancer. 1991;67(5):1467–9.CrossRefPubMed
10.
go back to reference Knapke S, Nagarajan R, Correll J, Kent D, Burns K. Hereditary cancer risk assessment in a pediatric oncology follow-up clinic. Pediatr Blood Cancer. 2012;58(1):85–9.CrossRefPubMed Knapke S, Nagarajan R, Correll J, Kent D, Burns K. Hereditary cancer risk assessment in a pediatric oncology follow-up clinic. Pediatr Blood Cancer. 2012;58(1):85–9.CrossRefPubMed
11.
go back to reference Schiffman JD. Hereditary cancer syndromes: if you look, you will find them. Pediatr Blood Cancer. 2012;58(1):5–6.CrossRefPubMed Schiffman JD. Hereditary cancer syndromes: if you look, you will find them. Pediatr Blood Cancer. 2012;58(1):5–6.CrossRefPubMed
12.
14.
go back to reference Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86(21):1600–8.CrossRefPubMed Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86(21):1600–8.CrossRefPubMed
15.
go back to reference Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau DA, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46.CrossRefPubMedPubMedCentral Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau DA, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46.CrossRefPubMedPubMedCentral
16.
go back to reference Breslow NE, Olson J, Moksness J, Beckwith JB, Grundy P. Familial Wilms' tumor: a descriptive study. Med Pediatr Oncol. 1996;27(5):398–403.CrossRefPubMed Breslow NE, Olson J, Moksness J, Beckwith JB, Grundy P. Familial Wilms' tumor: a descriptive study. Med Pediatr Oncol. 1996;27(5):398–403.CrossRefPubMed
17.
18.
19.
go back to reference Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet. 2000;355(9199):165–9.CrossRefPubMed Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet. 2000;355(9199):165–9.CrossRefPubMed
20.
go back to reference Lange B. The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematol. 2000;110(3):512–24.CrossRefPubMed Lange B. The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematol. 2000;110(3):512–24.CrossRefPubMed
21.
go back to reference Schiffman JD, Geller JI, Mundt E, Means A, Means L, Means V. Update on pediatric cancer predisposition syndromes. Pediatr Blood Cancer. 2013;60(8):1247–52.CrossRefPubMed Schiffman JD, Geller JI, Mundt E, Means A, Means L, Means V. Update on pediatric cancer predisposition syndromes. Pediatr Blood Cancer. 2013;60(8):1247–52.CrossRefPubMed
22.
go back to reference Strahm B, Malkin D. Hereditary cancer predisposition in children: genetic basis and clinical implications. International journal of cancer Journal international du cancer. 2006;119(9):2001.CrossRefPubMed Strahm B, Malkin D. Hereditary cancer predisposition in children: genetic basis and clinical implications. International journal of cancer Journal international du cancer. 2006;119(9):2001.CrossRefPubMed
26.
go back to reference Gurney JG, Severson RK, Davis S, Robison LL. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. 1995;75(8):2186–95.CrossRefPubMed Gurney JG, Severson RK, Davis S, Robison LL. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. 1995;75(8):2186–95.CrossRefPubMed
27.
go back to reference Ross JA, Robison LL. MLL rearrangements in infant leukemia: is there a higher frequency in females? Leuk Res. 1997;21(8):793–5.CrossRefPubMed Ross JA, Robison LL. MLL rearrangements in infant leukemia: is there a higher frequency in females? Leuk Res. 1997;21(8):793–5.CrossRefPubMed
28.
go back to reference Hemminki K, Li X. Cancer risks in twins: results from the Swedish family-cancer database. Int J Cancer. 2002;99(6):873–8.CrossRefPubMed Hemminki K, Li X. Cancer risks in twins: results from the Swedish family-cancer database. Int J Cancer. 2002;99(6):873–8.CrossRefPubMed
29.
go back to reference Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood. 2003;102(7):2321–33.CrossRefPubMed Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood. 2003;102(7):2321–33.CrossRefPubMed
30.
go back to reference Morrison BA, Ucisik-Akkaya E, Flores H, Alaez C, Gorodezky C, Dorak MT. Multiple sclerosis risk markers in HLA-DRA, HLA-C, and IFNG genes are associated with sex-specific childhood leukemia risk. Autoimmunity. 2010;43(8):690–7.CrossRefPubMed Morrison BA, Ucisik-Akkaya E, Flores H, Alaez C, Gorodezky C, Dorak MT. Multiple sclerosis risk markers in HLA-DRA, HLA-C, and IFNG genes are associated with sex-specific childhood leukemia risk. Autoimmunity. 2010;43(8):690–7.CrossRefPubMed
Metadata
Title
Predominance of girls with cancer in families with multiple childhood cancer cases
Authors
Karl-Johan Stjernfelt
Kristoffer von Stedingk
Thomas Wiebe
Lars Hjorth
Håkan Olsson
Ingrid Øra
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3899-8

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine