Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Molecular targeted photoimmunotherapy for HER2-positive human gastric cancer in combination with chemotherapy results in improved treatment outcomes through different cytotoxic mechanisms

Authors: Kimihiro Ito, Makoto Mitsunaga, Seiji Arihiro, Masayuki Saruta, Mika Matsuoka, Hisataka Kobayashi, Hisao Tajiri

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Photoimmunotherapy (PIT) is a novel type of molecular optical imaging-guided cancer phototherapy based on a monoclonal antibody conjugated to a photosensitizer, IR700, in combination with near-infrared (NIR) light. PIT rapidly causes target-specific cell death by inducing cell membrane damages and appears to be highly effective; however, we have previously demonstrated that tumor recurrences were eventually seen in PIT-treated mice, likely owing to inhomogeneous mAb-IR700 conjugate distribution in the tumor, thus limiting the effectiveness of PIT as a monotherapy. Here, we examined the effects of human epidermal growth factor-2 (HER2)-targeted PIT in combination with 5-fluorouracil (5-FU) compared to PIT alone for HER2-expressing human gastric cancer cells.

Methods

NCI-N87 cells, HER2-positive human gastric cancer cells, were used for the experiments. Trastuzumab, a monoclonal antibody directed against HER2, was conjugated to IR700. To assess the short-term cytotoxicity and examine the apoptotic effects upon addition of 5-FU in vitro, we performed LIVE/DEAD and caspase-3 activity assays. Additionally, to explore the effects on long-term growth inhibition, trypan blue dye exclusion assay was performed. NCI-N87 tumor xenograft models were prepared for in vivo treatment studies and the tumor-bearing mice were randomized into various treatment groups.

Results

Compared to PIT alone, the combination of HER2-targeted PIT and 5-FU rapidly induced significant cytotoxicity in both the short-term and long-term cytotoxicity assays. While both 5-FU and/or trastuzumab-IR700 conjugate treatment induced an increase in caspase-3 activity, there was no additional increase in caspase-3 activity upon NIR light irradiation after incubation with 5-FU and/or trastuzumab-IR700. The combination of HER2-targeted PIT and 5-FU resulted in greater and longer tumor growth inhibition than PIT monotherapy in vivo. This combined effect of PIT and 5-FU is likely owing to their different mechanisms of inducing tumor cell death, namely necrotic membrane damage by PIT and apoptotic cell death by 5-FU and trastuzumab.

Conclusions

PIT in combination with 5-FU resulted in enhanced antitumor effects compared to PIT alone for HER2-expressing human gastric cancer in vitro and in vivo. This combination photoimmunochemotherapy represents a practical method for treating human gastric cancer and should be investigated further in the clinical setting.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
go back to reference Cunningham SC, Kamangar F, Kim MP, Hammoud S, Haque R, Maitra A, et al. Survival after gastric adenocarcinoma resection: eighteen-year experience at a single institution. J Gastrointest Surg. 2005;9:718–25.CrossRefPubMed Cunningham SC, Kamangar F, Kim MP, Hammoud S, Haque R, Maitra A, et al. Survival after gastric adenocarcinoma resection: eighteen-year experience at a single institution. J Gastrointest Surg. 2005;9:718–25.CrossRefPubMed
3.
go back to reference Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20.CrossRefPubMed Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20.CrossRefPubMed
5.
go back to reference Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006;6:559–65.CrossRefPubMed Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006;6:559–65.CrossRefPubMed
6.
go back to reference Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23:1073–8.CrossRefPubMed Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23:1073–8.CrossRefPubMed
7.
go back to reference Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol. 2008;19:1523–9.CrossRefPubMed Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol. 2008;19:1523–9.CrossRefPubMed
8.
go back to reference Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.CrossRefPubMed Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.CrossRefPubMed
9.
go back to reference Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomized controlled trial. Lancet. 2010;376:687–97.CrossRefPubMed Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomized controlled trial. Lancet. 2010;376:687–97.CrossRefPubMed
10.
go back to reference Yano T, Doi T, Ohtsu A, Boku N, Hashizume K, Nakanishi M, et al. Comparison of HER2 gene amplification assessed by fluorescence in situ hybridization and HER2 protein expression assessed by immunohistochemistry in gastric cancer. Oncol Rep. 2006;15:65–71.PubMed Yano T, Doi T, Ohtsu A, Boku N, Hashizume K, Nakanishi M, et al. Comparison of HER2 gene amplification assessed by fluorescence in situ hybridization and HER2 protein expression assessed by immunohistochemistry in gastric cancer. Oncol Rep. 2006;15:65–71.PubMed
11.
go back to reference Fujimoto-Ouchi K, Sekiguchi F, Yasuno H, Moriya Y, Mori K, Tanaka Y. Antitumor activity of trastuzumab in combination with chemotherapy in human gastric cancer xenograft models. Cancer Chemother Pharmacol. 2007;59:795–805.CrossRefPubMed Fujimoto-Ouchi K, Sekiguchi F, Yasuno H, Moriya Y, Mori K, Tanaka Y. Antitumor activity of trastuzumab in combination with chemotherapy in human gastric cancer xenograft models. Cancer Chemother Pharmacol. 2007;59:795–805.CrossRefPubMed
12.
go back to reference Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 2011;17:1685–91.PubMedCentralCrossRefPubMed Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 2011;17:1685–91.PubMedCentralCrossRefPubMed
13.
go back to reference Mitsunaga M, Nakajima T, Sano K, Choyke PL, Kobayashi H. Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate. Bioconjug Chem. 2012;23:604–9.CrossRefPubMed Mitsunaga M, Nakajima T, Sano K, Choyke PL, Kobayashi H. Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate. Bioconjug Chem. 2012;23:604–9.CrossRefPubMed
14.
go back to reference Mitsunaga M, Nakajima T, Sano K, Kramer-Marek G, Choyke PL, Kobayashi H. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer. 2012;12:345.PubMedCentralCrossRefPubMed Mitsunaga M, Nakajima T, Sano K, Kramer-Marek G, Choyke PL, Kobayashi H. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer. 2012;12:345.PubMedCentralCrossRefPubMed
16.
go back to reference Tanner M, Hollmén M, Junttila TT, Kapanen AI, Tommola S, Soini Y, et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIα gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005;16:273–8.CrossRefPubMed Tanner M, Hollmén M, Junttila TT, Kapanen AI, Tommola S, Soini Y, et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIα gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005;16:273–8.CrossRefPubMed
17.
go back to reference Hofmann M, Stoss O, Shi D, Büttner R, van de Vijver M, Kim W, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52:797–805.CrossRefPubMed Hofmann M, Stoss O, Shi D, Büttner R, van de Vijver M, Kim W, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52:797–805.CrossRefPubMed
18.
go back to reference Macdonald JS, Gohmann JJ. Chemotherapy of advanced gastric cancer: present status, future prospects. Semin Oncol. 1988;15:42–9.PubMed Macdonald JS, Gohmann JJ. Chemotherapy of advanced gastric cancer: present status, future prospects. Semin Oncol. 1988;15:42–9.PubMed
19.
go back to reference Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.CrossRefPubMed Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.CrossRefPubMed
20.
go back to reference Kosaka N, Ogawa M, Paik DS, Paik CH, Choyke PL, Kobayashi H. Microdistribution of fluorescently-labeled monoclonal antibody in a peritoneal dissemination model of ovarian cancer. Proc SPIE. 2010;7576:7576041–9. Kosaka N, Ogawa M, Paik DS, Paik CH, Choyke PL, Kobayashi H. Microdistribution of fluorescently-labeled monoclonal antibody in a peritoneal dissemination model of ovarian cancer. Proc SPIE. 2010;7576:7576041–9.
21.
go back to reference von Mehren M, Adams GP, Weiner LM. Monoclonal antibody therapy for cancer. Annu Rev Med. 2003;54:343–69.CrossRef von Mehren M, Adams GP, Weiner LM. Monoclonal antibody therapy for cancer. Annu Rev Med. 2003;54:343–69.CrossRef
22.
go back to reference Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 1988;48:7022–32.PubMed Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 1988;48:7022–32.PubMed
23.
go back to reference Danenberg PV, Langenbach RJ, Heidelberger C. Structure of reversible and irreversible complexes of thymidylate synthetase and fluorinated pyrimidine nucleotides. Biochemistry. 1974;13:926–33.CrossRefPubMed Danenberg PV, Langenbach RJ, Heidelberger C. Structure of reversible and irreversible complexes of thymidylate synthetase and fluorinated pyrimidine nucleotides. Biochemistry. 1974;13:926–33.CrossRefPubMed
24.
go back to reference Santi DV, McHenry CS, Sommer H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry. 1974;13:471–81.CrossRefPubMed Santi DV, McHenry CS, Sommer H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry. 1974;13:471–81.CrossRefPubMed
25.
go back to reference Mew D, Wat CK, Towers GH, Levy JG. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immonol. 1983;130:1473–7. Mew D, Wat CK, Towers GH, Levy JG. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immonol. 1983;130:1473–7.
26.
go back to reference Wilson BC, Patterson MS. The determination of light fluence distributions for photodynamic therapy. In: Kessel D, editor. Photodynamic therapy of neoplastic disease, vol. 1. Boca Raton: CRC press; 1990. p. 129–44. Wilson BC, Patterson MS. The determination of light fluence distributions for photodynamic therapy. In: Kessel D, editor. Photodynamic therapy of neoplastic disease, vol. 1. Boca Raton: CRC press; 1990. p. 129–44.
27.
go back to reference Sobolev AS, Jans DA, Rosenkranz AA. Targeted intracellular delivery of photosensitizers. Prog Biophys Mol Biol. 2000;73:51–90.CrossRefPubMed Sobolev AS, Jans DA, Rosenkranz AA. Targeted intracellular delivery of photosensitizers. Prog Biophys Mol Biol. 2000;73:51–90.CrossRefPubMed
28.
go back to reference Carcenac M, Dorvillius M, Garambois V, Glaussel F, Larroque C, Langlois R, et al. Internalisation enhances photo-induced cytotoxicity of monoclonal antibody-phthalocyanine conjugates. Br J Cancer. 2001;85:1787–93.PubMedCentralCrossRefPubMed Carcenac M, Dorvillius M, Garambois V, Glaussel F, Larroque C, Langlois R, et al. Internalisation enhances photo-induced cytotoxicity of monoclonal antibody-phthalocyanine conjugates. Br J Cancer. 2001;85:1787–93.PubMedCentralCrossRefPubMed
29.
Metadata
Title
Molecular targeted photoimmunotherapy for HER2-positive human gastric cancer in combination with chemotherapy results in improved treatment outcomes through different cytotoxic mechanisms
Authors
Kimihiro Ito
Makoto Mitsunaga
Seiji Arihiro
Masayuki Saruta
Mika Matsuoka
Hisataka Kobayashi
Hisao Tajiri
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2072-0

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine